Image Classification
FBAGSTM commited on
Commit
ac1726c
·
verified ·
1 Parent(s): 93b47e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -2,7 +2,7 @@
2
  license: other
3
  license_name: sla0044
4
  license_link: >-
5
- https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/LICENSE.md
6
  pipeline_tag: image-classification
7
  ---
8
  # EfficientNet
@@ -71,14 +71,14 @@ For an image resolution of NxM and P classes :
71
  ### Reference **NPU** memory footprint on food-101 dataset (see Accuracy for details on dataset)
72
  |Model | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
73
  |----------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
74
- | [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite) | Int8 | 128x128x3 | STM32N6 | 256 | 0 | 625.8 | 10.0.0 | 2.0.0 |
75
- | [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6 | 784.02 | 0 | 632.55 | 10.0.0 | 2.0.0 |
76
 
77
  ### Reference **NPU** inference time on food-101 dataset (see Accuracy for details on dataset)
78
  | Model | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
79
  |--------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
80
- | [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite)| Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 6.87 | 145.55 | 10.0.0 | 2.0.0 |
81
- | [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 15.8 | 63.29 | 10.0.0 | 2.0.0 |
82
 
83
 
84
  ### Reference **MCU** memory footprints based on Flowers dataset (see Accuracy for details on dataset)
 
2
  license: other
3
  license_name: sla0044
4
  license_link: >-
5
+ https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/LICENSE.md
6
  pipeline_tag: image-classification
7
  ---
8
  # EfficientNet
 
71
  ### Reference **NPU** memory footprint on food-101 dataset (see Accuracy for details on dataset)
72
  |Model | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
73
  |----------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
74
+ | [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite) | Int8 | 128x128x3 | STM32N6 | 256 | 0 | 625.8 | 10.0.0 | 2.0.0 |
75
+ | [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6 | 784.02 | 0 | 632.55 | 10.0.0 | 2.0.0 |
76
 
77
  ### Reference **NPU** inference time on food-101 dataset (see Accuracy for details on dataset)
78
  | Model | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
79
  |--------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
80
+ | [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite)| Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 6.87 | 145.55 | 10.0.0 | 2.0.0 |
81
+ | [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 15.8 | 63.29 | 10.0.0 | 2.0.0 |
82
 
83
 
84
  ### Reference **MCU** memory footprints based on Flowers dataset (see Accuracy for details on dataset)