Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# EfficientNet
|
@@ -71,14 +71,14 @@ For an image resolution of NxM and P classes :
|
|
71 |
### Reference **NPU** memory footprint on food-101 dataset (see Accuracy for details on dataset)
|
72 |
|Model | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|
73 |
|----------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
74 |
-
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite) | Int8 | 128x128x3 | STM32N6 | 256 | 0 | 625.8 | 10.0.0 | 2.0.0 |
|
75 |
-
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6 | 784.02 | 0 | 632.55 | 10.0.0 | 2.0.0 |
|
76 |
|
77 |
### Reference **NPU** inference time on food-101 dataset (see Accuracy for details on dataset)
|
78 |
| Model | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
79 |
|--------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
80 |
-
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite)| Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 6.87 | 145.55 | 10.0.0 | 2.0.0 |
|
81 |
-
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 15.8 | 63.29 | 10.0.0 | 2.0.0 |
|
82 |
|
83 |
|
84 |
### Reference **MCU** memory footprints based on Flowers dataset (see Accuracy for details on dataset)
|
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# EfficientNet
|
|
|
71 |
### Reference **NPU** memory footprint on food-101 dataset (see Accuracy for details on dataset)
|
72 |
|Model | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|
73 |
|----------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
74 |
+
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite) | Int8 | 128x128x3 | STM32N6 | 256 | 0 | 625.8 | 10.0.0 | 2.0.0 |
|
75 |
+
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6 | 784.02 | 0 | 632.55 | 10.0.0 | 2.0.0 |
|
76 |
|
77 |
### Reference **NPU** inference time on food-101 dataset (see Accuracy for details on dataset)
|
78 |
| Model | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
79 |
|--------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
80 |
+
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite)| Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 6.87 | 145.55 | 10.0.0 | 2.0.0 |
|
81 |
+
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 15.8 | 63.29 | 10.0.0 | 2.0.0 |
|
82 |
|
83 |
|
84 |
### Reference **MCU** memory footprints based on Flowers dataset (see Accuracy for details on dataset)
|