FBAGSTM commited on
Commit
69f07d8
·
verified ·
1 Parent(s): d4435b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -6
README.md CHANGED
@@ -1,6 +1,111 @@
1
- ---
2
- license: other
3
- license_name: sla0044
4
- license_link: >-
5
- https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/ST_pretrainedmodel_public_dataset/LICENSE.md
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: sla0044
4
+ license_link: >-
5
+ https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/ST_pretrainedmodel_public_dataset/LICENSE.md
6
+ ---
7
+ # IGN HAR model
8
+
9
+ ## **Use case** : `Human activity recognition`
10
+
11
+ # Model description
12
+
13
+ IGN is acronym of Ignatov, and is a convolutional neural network (CNN) based model for performing the human activity recognition (HAR) task based on the 3D accelerometer data. In this work we use a modified version of the IGN model presented in the [paper[2]](#2). It uses the 3D raw data with gravity rotation and supression filter as preprocessing. This is a light model with very small foot prints in terms of FLASH and RAM as well as computational requirements.
14
+
15
+ This network supports any input size greater than (20 x 3 x 1) but we recommend to use at least (24 x 3 x 1), i.e. a window length of 24 samples. In this folder we provide IGN models trained with two different window lenghts [24 and 48].
16
+
17
+ The only input required to the model is the input shape, dropout ratio, and the number of output classes.
18
+
19
+ In this folder you will find multiple copies of the IGN model pretrained on a public dataset ([WISDM](https://www.cis.fordham.edu/wisdm/dataset.php)) and a custom dataset collected by ST (mobility_v1).
20
+
21
+ ## Network information
22
+
23
+
24
+ | Network Information | Value |
25
+ |:-----------------------:|:---------------:|
26
+ | Framework | TensorFlow |
27
+ | Params | 3,064 |
28
+
29
+
30
+ ## Network inputs / outputs
31
+
32
+
33
+ For an input resolution of wl x 3 x 1 and P classes
34
+
35
+ | Input Shape | Description |
36
+ | :----:| :-----------: |
37
+ | (1, wl, 3, 1) | Single ( wl x 3 x 1 ) matrix of accelerometer values, `wl` is window lenght, for 3 axes and 1 is channel in FLOAT32.|
38
+
39
+ | Output Shape | Description |
40
+ | :----:| :-----------: |
41
+ | (1, P) | Per-class confidence for P classes in FLOAT32|
42
+
43
+
44
+ ## Recommended platforms
45
+
46
+
47
+ | Platform | Supported | Recommended |
48
+ |:----------:|:-----------:|:-----------:|
49
+ | STM32L4 | [x] | [] |
50
+ | STM32U5 | [x] | [x] |
51
+
52
+
53
+ # Performances
54
+
55
+ ## Metrics
56
+
57
+ Measures are done with [STM32Cube.AI Dev Cloud version](https://stm32ai-cs.st.com/home) 10.0.0 with enabled input/output allocated options and balanced optimization. The inference time is reported is calculated using **STM32Cube.AI version 10.0.0**, on STM32 board **B-U585I-IOT02A** running at Frequency of **160 MHz**.
58
+
59
+
60
+ Reference memory footprint and inference times for IGN models are given in the table below. The accuracies are provided in the sections after for two datasets.
61
+
62
+
63
+ | Model | Format | Input Shape | Series | Activation RAM (KiB) | Runtime RAM (KiB) | Weights Flash (KiB) | Code Flash (KiB) | Total RAM (KiB)| Total Flash (KiB) | Inference Time (msec) | STM32Cube.AI version |
64
+ |:-----------------------------------------------------------------------------:|:---------:|:-----------:|:-------:|:--------------------:|:-----------------:|:-------------------:|:----------------:|:--------------:|:-----------------:|:---------------------:|:---------------------:|
65
+ | [IGN wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/ST_pretrainedmodel_public_dataset/WISDM/ign_wl_24/ign_wl_24.h5) | FLOAT32 | 24 x 3 x 1 | STM32U5 | 2.03 | 1.91 | 11.97 | 13.61 | 3.94 | 25.58 | 2.25 | 10.0.0 |
66
+ | [IGN wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/ST_pretrainedmodel_public_dataset/WISDM/ign_wl_48/ign_wl_48.h5) | FLOAT32 | 48 x 3 x 1 | STM32U5 | 4.56 | 1.91 | 38.97 | 13.61 | 6.47 | 52.58 | 8.17 | 10.0.0 |
67
+
68
+
69
+
70
+
71
+ ### Accuracy with mobility_v1 dataset
72
+
73
+
74
+ Dataset details: A custom dataset and not publically available, Number of classes: 5 [Stationary, Walking, Jogging, Biking, Vehicle]. **(We kept only 4, [Stationary, Walking, Jogging, Biking]) and removed Driving**, Number of input frames: 81,151 (for wl = 24), and 40,575 for (wl = 48).
75
+
76
+
77
+ | Model | Format | Resolution | Accuracy (%)|
78
+ |:--------------------------------------------------------------------------------------------:|:------:|:----------:|:-----------:|
79
+ | [IGN wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/ST_pretrainedmodel_custom_dataset/mobility_v1/ign_wl_24/ign_wl_24.h5) | FLOAT32| 24 x 3 x 1 | 94.64 |
80
+ | [IGN wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/ST_pretrainedmodel_custom_dataset/mobility_v1/ign_wl_48/ign_wl_48.h5) | FLOAT32| 48 x 3 x 1 | 95.01 |
81
+
82
+ Confusion matrix for IGN wl 24 with Float32 weights for mobility_v1 dataset is given below.
83
+
84
+ ![plot](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/doc/img/mobility_v1_ign_wl_24_confusion_matrix.png)
85
+
86
+
87
+ ### Accuracy with WISDM dataset
88
+
89
+
90
+ Dataset details: [link](([WISDM]("https://www.cis.fordham.edu/wisdm/dataset.php"))) , License [CC BY 2.0](https://creativecommons.org/licenses/by/2.0/) , Quotation[[1]](#1) , Number of classes: 4 (we are combining [Upstairs and Downstairs into Stairs] and [Standing and Sitting into Stationary]), Number of samples: 45,579 (at wl = 24), and 22,880 (at wl = 48).
91
+
92
+ | Model | Format | Resolution | Accuracy (%) |
93
+ |:-------------------------------------------------------------------------------------:|:-------:|:----------:|:-------------:|
94
+ | [IGN wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/ST_pretrainedmodel_public_dataset/WISDM/ign_wl_24/ign_wl_24.h5) | FLOAT32 | 24 x 3 x 1 | 91.7 |
95
+ | [IGN wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/ign/ST_pretrainedmodel_public_dataset/WISDM/ign_wl_48/ign_wl_48.h5) | FLOAT32 | 48 x 3 x 1 | 93.67 |
96
+
97
+
98
+ ## Retraining and Integration in a simple example:
99
+
100
+ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
101
+
102
+
103
+
104
+ # References
105
+
106
+ <a id="1">[1]</a>
107
+ “WISDM : Human activity recognition datasets". [Online]. Available: "https://www.cis.fordham.edu/wisdm/dataset.php".
108
+
109
+ <a id="2">[2]</a>
110
+ “Real-time human activity recognition from accelerometer data using Convolutional Neural Networks, Andrey Ignatove". [Online]. Available: "https://www.sciencedirect.com/science/article/abs/pii/S1568494617305665?via%3Dihub".
111
+