Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
---
|
7 |
# GMP HAR model
|
8 |
|
@@ -64,8 +64,8 @@ The inference time is reported is calculated on STM32 board **B-U585I-IOT02A** r
|
|
64 |
|
65 |
| Model | Format | Input Shape | Target Board | Activation RAM (KiB) | Runtime RAM (KiB) | Weights Flash (KiB) | Code Flash (KiB) | Total RAM (KiB) | Total Flash (KiB) | Inference Time (ms) | STM32Cube.AI version |
|
66 |
|:----------------------------------------------------------------------------:|:------:|:-----------:|:-------:|:--------------------:|:-----------------:|:-------------------:|:----------------:|:-----------------:|:-----------------:|:---------------------:|:---------------------:|
|
67 |
-
| [GMP wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_24/gmp_wl_24.h5) | FLOAT32| 24 x 3 x 1 | B-U585I-IOT02A | 4.25 | 2.08 | 5.70 | 12.29 | 6.33 | 18.96 | 4.42 | 10.0.0 |
|
68 |
-
| [GMP wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_48/gmp_wl_48.h5) | FLOAT32| 48 x 3 x 1 | B-U585I-IOT02A | 8.83 | 2.08 | 5.70 | 12.29 | 10.91 | 18.96 | 10.64 | 10.0.0 |
|
69 |
|
70 |
|
71 |
|
@@ -77,13 +77,13 @@ Dataset details: A custom dataset and not publically available, Number of classe
|
|
77 |
|
78 |
| Model | Format | Resolution | Accuracy (%) |
|
79 |
|:----------------------------------------------------------------------------------------------:|:--------:|:----------:|:-------------:|
|
80 |
-
| [GMP wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/gmp/ST_pretrainedmodel_custom_dataset/mobility_v1/gmp_wl_24/gmp_wl_24.h5) | FLOAT32 | 24 x 3 x 1 | 94.08 |
|
81 |
-
| [GMP wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/gmp/ST_pretrainedmodel_custom_dataset/mobility_v1/gmp_wl_48/gmp_wl_48.h5) | FLOAT32 | 48 x 3 x 1 | 93.84 |
|
82 |
|
83 |
|
84 |
Confusion matrix for GMP wl 24 with Float32 weights for mobility_v1 dataset is given below.
|
85 |
|
86 |
-

|
87 |
|
88 |
### Accuracy with WISDM dataset
|
89 |
|
@@ -92,8 +92,8 @@ Dataset details: [link](([WISDM](https://www.cis.fordham.edu/wisdm/dataset.php))
|
|
92 |
|
93 |
| Model | Format | Resolution | Accuracy (%) |
|
94 |
|:--------------------------------------------------------------------------------------:|:--------:|:-----------:|:--------------:|
|
95 |
-
| [GMP wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_24/gmp_wl_24.h5) | FLOAT32 | 24 x 3 x 1 | 84.49 |
|
96 |
-
| [GMP wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_48/gmp_wl_48.h5) | FLOAT32 | 48 x 3 x 1 | 87.05 |
|
97 |
|
98 |
|
99 |
## Retraining and Integration in a simple example:
|
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
---
|
7 |
# GMP HAR model
|
8 |
|
|
|
64 |
|
65 |
| Model | Format | Input Shape | Target Board | Activation RAM (KiB) | Runtime RAM (KiB) | Weights Flash (KiB) | Code Flash (KiB) | Total RAM (KiB) | Total Flash (KiB) | Inference Time (ms) | STM32Cube.AI version |
|
66 |
|:----------------------------------------------------------------------------:|:------:|:-----------:|:-------:|:--------------------:|:-----------------:|:-------------------:|:----------------:|:-----------------:|:-----------------:|:---------------------:|:---------------------:|
|
67 |
+
| [GMP wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_24/gmp_wl_24.h5) | FLOAT32| 24 x 3 x 1 | B-U585I-IOT02A | 4.25 | 2.08 | 5.70 | 12.29 | 6.33 | 18.96 | 4.42 | 10.0.0 |
|
68 |
+
| [GMP wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_48/gmp_wl_48.h5) | FLOAT32| 48 x 3 x 1 | B-U585I-IOT02A | 8.83 | 2.08 | 5.70 | 12.29 | 10.91 | 18.96 | 10.64 | 10.0.0 |
|
69 |
|
70 |
|
71 |
|
|
|
77 |
|
78 |
| Model | Format | Resolution | Accuracy (%) |
|
79 |
|:----------------------------------------------------------------------------------------------:|:--------:|:----------:|:-------------:|
|
80 |
+
| [GMP wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/human_activity_recognition/gmp/ST_pretrainedmodel_custom_dataset/mobility_v1/gmp_wl_24/gmp_wl_24.h5) | FLOAT32 | 24 x 3 x 1 | 94.08 |
|
81 |
+
| [GMP wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/human_activity_recognition/gmp/ST_pretrainedmodel_custom_dataset/mobility_v1/gmp_wl_48/gmp_wl_48.h5) | FLOAT32 | 48 x 3 x 1 | 93.84 |
|
82 |
|
83 |
|
84 |
Confusion matrix for GMP wl 24 with Float32 weights for mobility_v1 dataset is given below.
|
85 |
|
86 |
+

|
87 |
|
88 |
### Accuracy with WISDM dataset
|
89 |
|
|
|
92 |
|
93 |
| Model | Format | Resolution | Accuracy (%) |
|
94 |
|:--------------------------------------------------------------------------------------:|:--------:|:-----------:|:--------------:|
|
95 |
+
| [GMP wl 24](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_24/gmp_wl_24.h5) | FLOAT32 | 24 x 3 x 1 | 84.49 |
|
96 |
+
| [GMP wl 48](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_48/gmp_wl_48.h5) | FLOAT32 | 48 x 3 x 1 | 87.05 |
|
97 |
|
98 |
|
99 |
## Retraining and Integration in a simple example:
|