S-Dreamer commited on
Commit
79d8535
·
verified ·
1 Parent(s): eedab57

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +251 -3
README.md CHANGED
@@ -1,3 +1,251 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ datasets:
6
+ - flytech/python-codes-25k
7
+ - jinaai/code_exercises
8
+ - kye/all-huggingface-python-code
9
+ metrics:
10
+ - codeparrot/apps_metric
11
+ - code_eval
12
+ - f1
13
+ - accuracy
14
+ - rouge
15
+ pipeline_tag: text2text-generation
16
+ library_name: transformers
17
+ tags:
18
+ - code
19
+ ---
20
+
21
+ # Model Card for PyCodeT5
22
+
23
+ CodeT5 Python Functions is a specialized variant of the CodeT5 model, fine-tuned for generating and understanding Python functions. It is designed to assist in transforming natural language descriptions into functional Python code, as well as optimizing existing code by applying Pythonic conventions and best practices. This model can generate function definitions, implement logical flows, and assist with debugging and refactoring Python code. It is ideal for developers, learners, and AI-powered programming assistants.
24
+
25
+ ---
26
+
27
+ ## Table of Contents
28
+
29
+ - [Model Card for PyCodeT5](#model-card-for-pycodet5)
30
+ - [Table of Contents](#table-of-contents)
31
+ - [Model Details](#model-details)
32
+ - [Model Description](#model-description)
33
+ - [Uses](#uses)
34
+ - [Direct Use](#direct-use)
35
+ - [Downstream Use [Optional]](#downstream-use-optional)
36
+ - [Out-of-Scope Use](#out-of-scope-use)
37
+ - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
38
+ - [Recommendations](#recommendations)
39
+ - [Training Details](#training-details)
40
+ - [Training Data](#training-data)
41
+ - [Training Procedure](#training-procedure)
42
+ - [Preprocessing](#preprocessing)
43
+ - [Speeds, Sizes, Times](#speeds-sizes-times)
44
+ - [Evaluation](#evaluation)
45
+ - [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
46
+ - [Testing Data](#testing-data)
47
+ - [Factors](#factors)
48
+ - [Metrics](#metrics)
49
+ - [Results](#results)
50
+ - [Model Examination](#model-examination)
51
+ - [Environmental Impact](#environmental-impact)
52
+ - [Technical Specifications [optional]](#technical-specifications-optional)
53
+ - [Model Architecture and Objective](#model-architecture-and-objective)
54
+ - [Compute Infrastructure](#compute-infrastructure)
55
+ - [Hardware](#hardware)
56
+ - [Software](#software)
57
+ - [Citation](#citation)
58
+ - [Glossary [optional]](#glossary-optional)
59
+ - [More Information [optional]](#more-information-optional)
60
+ - [Model Card Authors [optional]](#model-card-authors-optional)
61
+ - [Model Card Contact](#model-card-contact)
62
+ - [How to Get Started with the Model](#how-to-get-started-with-the-model)
63
+
64
+ ---
65
+
66
+ ## Model Details
67
+
68
+ ### Model Description
69
+
70
+ CodeT5 Python Functions is a specialized variant of the CodeT5 model, fine-tuned for generating and understanding Python functions. It is designed to assist in transforming natural language descriptions into functional Python code, as well as optimizing existing code by applying Pythonic conventions and best practices. This model can generate function definitions, implement logical flows, and assist with debugging and refactoring Python code. It is ideal for developers, learners, and AI-powered programming assistants.
71
+
72
+ - **Developed by:** More information needed
73
+ - **Shared by [Optional]:** More information needed
74
+ - **Model type:** Language model
75
+ - **Language(s) (NLP):** en
76
+ - **License:** apache-2.0
77
+ - **Parent Model:** More information needed
78
+ - **Resources for more information:**
79
+ - [GitHub Repo](https://github.com/Salesforce/CodeT5)
80
+ - [Associated Paper](2103.02720)
81
+
82
+ ---
83
+
84
+ ## Uses
85
+
86
+ ### Direct Use
87
+
88
+ - **Generate Python Functions:** Convert natural language descriptions into functional Python code.
89
+ - **Optimize Python Code:** Apply Pythonic conventions and best practices to improve code quality.
90
+ - **Assist with Debugging and Refactoring:** Help users identify and fix issues in Python code.
91
+
92
+ ### Downstream Use [Optional]
93
+
94
+ - **Integration with AI-powered programming assistants:** Use as a backend model for intelligent code completion or review tools.
95
+
96
+ ### Out-of-Scope Use
97
+
98
+ - **Non-Python Code Generation:** This model is specifically trained for Python code generation and is not suitable for other languages.
99
+ - **Sensitive Applications:** It is not recommended to use this model in mission-critical systems or environments where safety or security is paramount.
100
+
101
+ ---
102
+
103
+ ## Bias, Risks, and Limitations
104
+
105
+ This model, like other large language models, may reflect biases present in the data used during training. For example, it may generate code that includes harmful stereotypes or unfair practices in certain contexts.
106
+
107
+ ### Recommendations
108
+
109
+ - **Careful Use in Sensitive Domains:** When applying the model in high-risk or security-critical environments, extra validation and review processes should be in place.
110
+ - **Code Review:** Always ensure that code generated by this model undergoes thorough human review, especially in sensitive or production environments.
111
+
112
+ ---
113
+
114
+ ## Training Details
115
+
116
+ ### Training Data
117
+
118
+ The model was fine-tuned on a dataset of Python code from various open-source repositories. It has been specifically trained to understand Python function structures and best practices.
119
+
120
+ ### Training Procedure
121
+
122
+ - **Preprocessing:** The training data underwent standard preprocessing steps, such as tokenization and cleaning, to ensure quality input for fine-tuning.
123
+ - **Speeds, Sizes, Times:** More detailed information on training speed and times is needed for transparency.
124
+
125
+ ---
126
+
127
+ ## Evaluation
128
+
129
+ ### Testing Data, Factors & Metrics
130
+
131
+ #### Testing Data
132
+
133
+ The testing data consists of Python code from a variety of open-source repositories and function-oriented tasks.
134
+
135
+ #### Factors
136
+
137
+ - **Task Complexity:** Evaluation includes both simple function generation and more complex refactoring tasks.
138
+ - **Code Quality:** Assessed based on the application of Pythonic principles like readability, clarity, and efficiency.
139
+
140
+ #### Metrics
141
+
142
+ - **Accuracy:** Measures the correctness of the generated code.
143
+ - **Code Quality:** Evaluates how well the generated code follows Pythonic best practices.
144
+
145
+ ---
146
+
147
+ ## Results
148
+
149
+ More information on the evaluation results is needed to fully assess the model’s performance.
150
+
151
+ ---
152
+
153
+ ## Model Examination
154
+
155
+ A detailed examination of the model's behavior, including edge cases, is needed to identify areas of improvement.
156
+
157
+ ---
158
+
159
+ ## Environmental Impact
160
+
161
+ - **Hardware Type:** More information needed
162
+ - **Cloud Provider:** More information needed
163
+ - **Carbon Emitted:** More information needed
164
+
165
+ ---
166
+
167
+ ## Technical Specifications [Optional]
168
+
169
+ ### Model Architecture and Objective
170
+
171
+ The architecture is based on the Transformer model, optimized for code generation tasks.
172
+
173
+ ### Compute Infrastructure
174
+
175
+ More details about the compute resources used in training and deployment are needed.
176
+
177
+ #### Hardware
178
+
179
+ More information needed.
180
+
181
+ #### Software
182
+
183
+ More information needed.
184
+
185
+ ---
186
+
187
+ ## Citation
188
+
189
+ **BibTeX:**
190
+
191
+ More information needed.
192
+
193
+ **APA:**
194
+
195
+ More information needed.
196
+
197
+ ---
198
+
199
+ ## Glossary [Optional]
200
+
201
+ More information needed.
202
+
203
+ ---
204
+
205
+ ## More Information [Optional]
206
+
207
+ More information needed.
208
+
209
+ ---
210
+
211
+ ## Model Card Authors [Optional]
212
+
213
+ S de Jager
214
+
215
+ ---
216
+
217
+ ## Model Card Contact
218
+
219
+ More information needed.
220
+
221
+ ---
222
+
223
+ ## How to Get Started with the Model
224
+
225
+ To get started, use the code below to load and use the PyCodeT5 model.
226
+
227
+ <details>
228
+ <summary> Click to expand </summary>
229
+
230
+ ```python
231
+ from transformers import AutoModelForCausalLM, AutoTokenizer
232
+
233
+ # Load the model and tokenizer
234
+ model_name = 'Salesforce/CodeT5-Python-functions'
235
+ model = AutoModelForCausalLM.from_pretrained(model_name)
236
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
237
+
238
+ # Example input
239
+ input_text = "def sum(a, b):"
240
+ inputs = tokenizer(input_text, return_tensors="pt")
241
+
242
+ # Generate code
243
+ outputs = model.generate(**inputs)
244
+ generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
245
+
246
+ print(generated_code)
247
+ ```
248
+
249
+ </details>
250
+
251
+ ---