Update README.md
Browse files
README.md
CHANGED
|
@@ -1,13 +1,18 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
# Model Card for Model ID
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
|
@@ -17,21 +22,21 @@ tags: []
|
|
| 17 |
|
| 18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
|
| 20 |
-
- **Developed by:**
|
| 21 |
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:**
|
| 24 |
-
- **Language(s) (NLP):**
|
| 25 |
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:**
|
| 27 |
|
| 28 |
### Model Sources [optional]
|
| 29 |
|
| 30 |
<!-- Provide the basic links for the model. -->
|
| 31 |
|
| 32 |
-
- **Repository:** [
|
| 33 |
-
- **Paper [optional]:**
|
| 34 |
-
- **Demo [optional]:** [
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
|
@@ -39,7 +44,48 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
| 39 |
|
| 40 |
### Direct Use
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
[More Information Needed]
|
| 45 |
|
|
@@ -92,7 +138,15 @@ Use the code below to get started with the model.
|
|
| 92 |
|
| 93 |
#### Training Hyperparameters
|
| 94 |
|
| 95 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
#### Speeds, Sizes, Times [optional]
|
| 98 |
|
|
@@ -158,15 +212,29 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
| 158 |
|
| 159 |
### Compute Infrastructure
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
| 162 |
|
| 163 |
#### Hardware
|
| 164 |
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
#### Software
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
## Citation [optional]
|
| 172 |
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- es
|
| 6 |
+
base_model:
|
| 7 |
+
- facebook/detr-resnet-101
|
| 8 |
---
|
| 9 |
|
| 10 |
# Model Card for Model ID
|
| 11 |
|
| 12 |
+
DETR allows to detect and generate the bounding boxes for handwritten and cursive text. This model was finetuned using the base model facebook/detr-resnet-101.
|
| 13 |
+
The dataset used is still under development and possible released in future versions.
|
| 14 |
+
Mainly, the model detects spanish text.
|
| 15 |
+
Note: The default value of generated bounding boxes was used (num_queries: 100). Modifying this value when using the model could lead to unexpected behavior.
|
| 16 |
|
| 17 |
## Model Details
|
| 18 |
|
|
|
|
| 22 |
|
| 23 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 24 |
|
| 25 |
+
- **Developed by:** Rodrigo Alvarez
|
| 26 |
- **Funded by [optional]:** [More Information Needed]
|
| 27 |
- **Shared by [optional]:** [More Information Needed]
|
| 28 |
+
- **Model type:** Text Detection / Bounding Box generation
|
| 29 |
+
- **Language(s) (NLP):** en (default), es-MX (finetuned)
|
| 30 |
- **License:** [More Information Needed]
|
| 31 |
+
- **Finetuned from model [optional]:** facebook/detr-resnet-101
|
| 32 |
|
| 33 |
### Model Sources [optional]
|
| 34 |
|
| 35 |
<!-- Provide the basic links for the model. -->
|
| 36 |
|
| 37 |
+
- **Repository:** [https://github.com/rodrigoalvarez-20/detr_trocr_handwritten_text/development](DETR TROCR Lab)
|
| 38 |
+
- **Paper [optional]:** *Work in progress*
|
| 39 |
+
- **Demo [optional]:** [https://github.com/rodrigoalvarez-20/detr_trocr_handwritten_text/blob/development/detr_lab.ipynb](Demo)
|
| 40 |
|
| 41 |
## Uses
|
| 42 |
|
|
|
|
| 44 |
|
| 45 |
### Direct Use
|
| 46 |
|
| 47 |
+
```python
|
| 48 |
+
from transformers import DetrForObjectDetection, DetrImageProcessor
|
| 49 |
+
import torch
|
| 50 |
+
import cv2
|
| 51 |
+
import supervision as sv
|
| 52 |
+
# User defined constants
|
| 53 |
+
MODEL_CHECKPOINT = "Rodr16020/detr_handwriten_cursive_text_detection"
|
| 54 |
+
DEVICE = "cuda"
|
| 55 |
+
CONFIDENCE_TRESHOLD = 0.5 # This parameter allows to filter the generated boxes with a confidence score >= to this value
|
| 56 |
+
IOU_TRESHOLD = 0.5
|
| 57 |
+
TEST_IMAGE = "demo.jpeg" # Path to the test image
|
| 58 |
+
#Load the model and preprocessor
|
| 59 |
+
img_proc = DetrImageProcessor.from_pretrained(MODEL_CHECKPOINT)
|
| 60 |
+
detr_model = DetrForObjectDetection.from_pretrained(
|
| 61 |
+
pretrained_model_name_or_path=MODEL_CHECKPOINT,
|
| 62 |
+
ignore_mismatched_sizes=True
|
| 63 |
+
).to(DEVICE)
|
| 64 |
+
# Get the pixel values of the image (matrix)
|
| 65 |
+
image = cv2.imread(TEST_IMAGE)
|
| 66 |
+
# inference
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
# load image and predict
|
| 69 |
+
inputs = img_proc(images=image, return_tensors='pt').to(DEVICE)
|
| 70 |
+
outputs = detr_model(**inputs)
|
| 71 |
+
# post-process
|
| 72 |
+
# Resize the generated Bounding Boxes coords to the image original size
|
| 73 |
+
target_sizes = torch.tensor([image.shape[:2]]).to(DEVICE)
|
| 74 |
+
results = img_proc.post_process_object_detection(
|
| 75 |
+
outputs=outputs,
|
| 76 |
+
threshold=CONFIDENCE_TRESHOLD,
|
| 77 |
+
target_sizes=target_sizes
|
| 78 |
+
)[0]
|
| 79 |
+
|
| 80 |
+
# To extract all the generated bboxes
|
| 81 |
+
boxes = results["boxes"].tolist()[0]
|
| 82 |
+
# With supervision lib, use the generated coords to annotate the image and preview the boxes
|
| 83 |
+
box_annotator = sv.BoxAnnotator()
|
| 84 |
+
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.1)
|
| 85 |
+
labels = [f"{confidence:.2f}" for _,_, confidence, class_id, _ in detections]
|
| 86 |
+
frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
|
| 87 |
+
sv.plot_image(frame, (16, 16))
|
| 88 |
+
```
|
| 89 |
|
| 90 |
[More Information Needed]
|
| 91 |
|
|
|
|
| 138 |
|
| 139 |
#### Training Hyperparameters
|
| 140 |
|
| 141 |
+
- Dataset Format: COCO
|
| 142 |
+
- Device: CUDA
|
| 143 |
+
- WEIGHT_DECAY = 3e-3
|
| 144 |
+
- CLIP_GRAD = 1e-4 #0.001
|
| 145 |
+
- BATCH_SIZE = 8
|
| 146 |
+
- ACC_BATCH = BATCH_SIZE * 4
|
| 147 |
+
- MODEL_LR = 5e-4 # In some articles, they set the value to 5e-4, but, in my case, it doesn't work, so I try with this and works "well"
|
| 148 |
+
- BB_LR = 5e-4 # Same as above
|
| 149 |
+
- MAX_EPOCHS = 300 # Use >= 50 . But it stops learning near the step 70
|
| 150 |
|
| 151 |
#### Speeds, Sizes, Times [optional]
|
| 152 |
|
|
|
|
| 212 |
|
| 213 |
### Compute Infrastructure
|
| 214 |
|
| 215 |
+
A simple and a tiny computer at CIC research lab.
|
| 216 |
+
|
| 217 |
+
When finetuning, the model and data used a total of
|
| 218 |
|
| 219 |
#### Hardware
|
| 220 |
|
| 221 |
+
- ASRock-placa base Z370/OEM
|
| 222 |
+
- Gabinete Corsair 4000D Airflow
|
| 223 |
+
- Procesador Intel Core i7 i7-8700K
|
| 224 |
+
- Memoria RAM XPG Spectrix DDR4, 3200MHz, 16GB (x4)
|
| 225 |
+
- SSD Externo Western Digital WD My Passport, 1TB
|
| 226 |
+
- NVIDIA GeForce RTX 4090 24GB
|
| 227 |
+
- Corsair Serie RMX, RM1000x, 1000 W
|
| 228 |
|
| 229 |
#### Software
|
| 230 |
|
| 231 |
+
- transformers
|
| 232 |
+
- pytorch
|
| 233 |
+
- tensorboard
|
| 234 |
+
- cv2
|
| 235 |
+
- supervision
|
| 236 |
+
|
| 237 |
+
And possibly others
|
| 238 |
|
| 239 |
## Citation [optional]
|
| 240 |
|