Update README.md
Browse files
README.md
CHANGED
@@ -1,13 +1,18 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
@@ -17,21 +22,21 @@ tags: []
|
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
- **Funded by [optional]:** [More Information Needed]
|
22 |
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:**
|
24 |
-
- **Language(s) (NLP):**
|
25 |
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:**
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:** [
|
33 |
-
- **Paper [optional]:**
|
34 |
-
- **Demo [optional]:** [
|
35 |
|
36 |
## Uses
|
37 |
|
@@ -39,7 +44,48 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
[More Information Needed]
|
45 |
|
@@ -92,7 +138,15 @@ Use the code below to get started with the model.
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
@@ -158,15 +212,29 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
|
|
|
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
## Citation [optional]
|
172 |
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- es
|
6 |
+
base_model:
|
7 |
+
- facebook/detr-resnet-101
|
8 |
---
|
9 |
|
10 |
# Model Card for Model ID
|
11 |
|
12 |
+
DETR allows to detect and generate the bounding boxes for handwritten and cursive text. This model was finetuned using the base model facebook/detr-resnet-101.
|
13 |
+
The dataset used is still under development and possible released in future versions.
|
14 |
+
Mainly, the model detects spanish text.
|
15 |
+
Note: The default value of generated bounding boxes was used (num_queries: 100). Modifying this value when using the model could lead to unexpected behavior.
|
16 |
|
17 |
## Model Details
|
18 |
|
|
|
22 |
|
23 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
24 |
|
25 |
+
- **Developed by:** Rodrigo Alvarez
|
26 |
- **Funded by [optional]:** [More Information Needed]
|
27 |
- **Shared by [optional]:** [More Information Needed]
|
28 |
+
- **Model type:** Text Detection / Bounding Box generation
|
29 |
+
- **Language(s) (NLP):** en (default), es-MX (finetuned)
|
30 |
- **License:** [More Information Needed]
|
31 |
+
- **Finetuned from model [optional]:** facebook/detr-resnet-101
|
32 |
|
33 |
### Model Sources [optional]
|
34 |
|
35 |
<!-- Provide the basic links for the model. -->
|
36 |
|
37 |
+
- **Repository:** [https://github.com/rodrigoalvarez-20/detr_trocr_handwritten_text/development](DETR TROCR Lab)
|
38 |
+
- **Paper [optional]:** *Work in progress*
|
39 |
+
- **Demo [optional]:** [https://github.com/rodrigoalvarez-20/detr_trocr_handwritten_text/blob/development/detr_lab.ipynb](Demo)
|
40 |
|
41 |
## Uses
|
42 |
|
|
|
44 |
|
45 |
### Direct Use
|
46 |
|
47 |
+
```python
|
48 |
+
from transformers import DetrForObjectDetection, DetrImageProcessor
|
49 |
+
import torch
|
50 |
+
import cv2
|
51 |
+
import supervision as sv
|
52 |
+
# User defined constants
|
53 |
+
MODEL_CHECKPOINT = "Rodr16020/detr_handwriten_cursive_text_detection"
|
54 |
+
DEVICE = "cuda"
|
55 |
+
CONFIDENCE_TRESHOLD = 0.5 # This parameter allows to filter the generated boxes with a confidence score >= to this value
|
56 |
+
IOU_TRESHOLD = 0.5
|
57 |
+
TEST_IMAGE = "demo.jpeg" # Path to the test image
|
58 |
+
#Load the model and preprocessor
|
59 |
+
img_proc = DetrImageProcessor.from_pretrained(MODEL_CHECKPOINT)
|
60 |
+
detr_model = DetrForObjectDetection.from_pretrained(
|
61 |
+
pretrained_model_name_or_path=MODEL_CHECKPOINT,
|
62 |
+
ignore_mismatched_sizes=True
|
63 |
+
).to(DEVICE)
|
64 |
+
# Get the pixel values of the image (matrix)
|
65 |
+
image = cv2.imread(TEST_IMAGE)
|
66 |
+
# inference
|
67 |
+
with torch.no_grad():
|
68 |
+
# load image and predict
|
69 |
+
inputs = img_proc(images=image, return_tensors='pt').to(DEVICE)
|
70 |
+
outputs = detr_model(**inputs)
|
71 |
+
# post-process
|
72 |
+
# Resize the generated Bounding Boxes coords to the image original size
|
73 |
+
target_sizes = torch.tensor([image.shape[:2]]).to(DEVICE)
|
74 |
+
results = img_proc.post_process_object_detection(
|
75 |
+
outputs=outputs,
|
76 |
+
threshold=CONFIDENCE_TRESHOLD,
|
77 |
+
target_sizes=target_sizes
|
78 |
+
)[0]
|
79 |
+
|
80 |
+
# To extract all the generated bboxes
|
81 |
+
boxes = results["boxes"].tolist()[0]
|
82 |
+
# With supervision lib, use the generated coords to annotate the image and preview the boxes
|
83 |
+
box_annotator = sv.BoxAnnotator()
|
84 |
+
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.1)
|
85 |
+
labels = [f"{confidence:.2f}" for _,_, confidence, class_id, _ in detections]
|
86 |
+
frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
|
87 |
+
sv.plot_image(frame, (16, 16))
|
88 |
+
```
|
89 |
|
90 |
[More Information Needed]
|
91 |
|
|
|
138 |
|
139 |
#### Training Hyperparameters
|
140 |
|
141 |
+
- Dataset Format: COCO
|
142 |
+
- Device: CUDA
|
143 |
+
- WEIGHT_DECAY = 3e-3
|
144 |
+
- CLIP_GRAD = 1e-4 #0.001
|
145 |
+
- BATCH_SIZE = 8
|
146 |
+
- ACC_BATCH = BATCH_SIZE * 4
|
147 |
+
- MODEL_LR = 5e-4 # In some articles, they set the value to 5e-4, but, in my case, it doesn't work, so I try with this and works "well"
|
148 |
+
- BB_LR = 5e-4 # Same as above
|
149 |
+
- MAX_EPOCHS = 300 # Use >= 50 . But it stops learning near the step 70
|
150 |
|
151 |
#### Speeds, Sizes, Times [optional]
|
152 |
|
|
|
212 |
|
213 |
### Compute Infrastructure
|
214 |
|
215 |
+
A simple and a tiny computer at CIC research lab.
|
216 |
+
|
217 |
+
When finetuning, the model and data used a total of
|
218 |
|
219 |
#### Hardware
|
220 |
|
221 |
+
- ASRock-placa base Z370/OEM
|
222 |
+
- Gabinete Corsair 4000D Airflow
|
223 |
+
- Procesador Intel Core i7 i7-8700K
|
224 |
+
- Memoria RAM XPG Spectrix DDR4, 3200MHz, 16GB (x4)
|
225 |
+
- SSD Externo Western Digital WD My Passport, 1TB
|
226 |
+
- NVIDIA GeForce RTX 4090 24GB
|
227 |
+
- Corsair Serie RMX, RM1000x, 1000 W
|
228 |
|
229 |
#### Software
|
230 |
|
231 |
+
- transformers
|
232 |
+
- pytorch
|
233 |
+
- tensorboard
|
234 |
+
- cv2
|
235 |
+
- supervision
|
236 |
+
|
237 |
+
And possibly others
|
238 |
|
239 |
## Citation [optional]
|
240 |
|