File size: 30,165 Bytes
80b0f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Jlq7oGlpguCe"
      },
      "source": [
        "# AI Art Style Detector Project - Topics Used\n",
        "\n",
        "## Machine Learning and Deep Learning Topics:\n",
        "\n",
        "### 1. Image Preprocessing:\n",
        "- **Image Loading**: Loading images from file input using Keras's `image.load_img()`.\n",
        "- **Resizing**: Resizing the input image to a fixed size (`224x224`) before feeding it into the model.\n",
        "- **Normalization**: Scaling pixel values to the range `[0, 1]` for efficient model input.\n",
        "\n",
        "### 2. Model Loading and Inference:\n",
        "- **Loading Pre-trained Models**: Using `tensorflow.keras.models.load_model()` to load a trained deep learning model (like a CNN for image classification).\n",
        "- **Prediction**: Using the model to make predictions by feeding the preprocessed image data into the model and getting class probabilities.\n",
        "\n",
        "### 3. Transfer Learning:\n",
        "- **Pre-trained Models**: The model is likely built on a pre-trained CNN model (such as VGG16, ResNet, etc.) through **transfer learning**, where the lower layers are frozen, and only the higher layers are fine-tuned for the specific art style classification task.\n",
        "   \n",
        "### 4. Classification:\n",
        "- **Categorical Output**: The model predicts which art style category (e.g., Impressionism, Surrealism) an artwork belongs to.\n",
        "- **Softmax Activation**: The output layer of the model typically uses **softmax** activation to produce probabilities for each art style class.\n",
        "\n",
        "---\n",
        "\n",
        "## Web Application Development Topics (Using Streamlit):\n",
        "\n",
        "### 1. Streamlit Layout:\n",
        "- **Column Layouts**: Using `st.columns()` to create responsive, side-by-side layouts for displaying images and results.\n",
        "- **Expander**: Using `st.expander()` to allow users to reveal additional information about the model and its functionality.\n",
        "\n",
        "### 2. File Uploading:\n",
        "- **Image Upload**: Using `st.file_uploader()` to allow users to upload images directly from their local device into the web app.\n",
        "- **Image Display**: Using `st.image()` to display the uploaded image on the web app.\n",
        "\n",
        "### 3. Interactive Widgets:\n",
        "- **Dropdown/Selectbox**: Using `st.selectbox()` to allow users to interactively select art styles and get more information about them.\n",
        "- **Buttons and Inputs**: You could add buttons and input fields to extend functionality, like adding manual entry for predicting specific images.\n",
        "\n",
        "### 4. Visualization:\n",
        "- **Plotly Charts**: Using **Plotly** to visualize art style distributions (like bar charts), making the app more interactive and engaging.\n",
        "- **Matplotlib/Seaborn** (Optional): Visualizing the results or image transformations (though Plotly is integrated here).\n",
        "\n",
        "### 5. Styling the UI:\n",
        "- **Custom CSS**: Using custom CSS injected into the Streamlit app with `st.markdown()` to enhance the look and feel of the app (e.g., custom colors, fonts, and element styling).\n",
        "   \n",
        "### 6. Streamlit Features:\n",
        "- **Markdown Rendering**: Using `st.markdown()` to render HTML and CSS for custom styling or display content.\n",
        "- **File Handling**: Streamlit handles file uploading, downloading, and processing in a straightforward way using `st.file_uploader()`.\n",
        "\n",
        "---\n",
        "\n",
        "## Deep Learning Topics in Model Development (for Art Style Classification):\n",
        "\n",
        "### 1. Convolutional Neural Networks (CNNs):\n",
        "- **Convolutional Layers**: CNNs are well-suited for image classification tasks due to their ability to automatically learn spatial hierarchies of features.\n",
        "- **Pooling Layers**: Max-pooling layers to reduce the spatial dimensions of the image while retaining important features.\n",
        "- **Fully Connected Layers**: Dense layers to perform the final classification.\n",
        "\n",
        "### 2. Transfer Learning:\n",
        "- Using pre-trained networks like **VGG16**, **ResNet**, or **Inception** as feature extractors, and fine-tuning the final layers for specific art styles.\n",
        "   \n",
        "### 3. Activation Functions:\n",
        "- **ReLU (Rectified Linear Unit)**: For non-linear transformations in hidden layers.\n",
        "- **Softmax**: For multi-class classification, used in the final output layer to output probabilities for each class.\n",
        "\n",
        "### 4. Model Training (Optional):\n",
        "- **Data Augmentation**: Techniques to artificially expand the dataset (e.g., rotations, flips, etc.).\n",
        "- **Loss Function**: Typically **categorical cross-entropy** for multi-class classification tasks.\n",
        "- **Optimizer**: Such as **Adam**, to adjust weights during training.\n",
        "\n",
        "### 5. Evaluation Metrics:\n",
        "- **Accuracy**: How often the model predicts the correct class.\n",
        "- **Confusion Matrix**: (Optional) To evaluate the model’s performance across different art styles.\n",
        "\n",
        "---\n",
        "\n",
        "## Other Relevant Topics:\n",
        "\n",
        "### 1. Data Handling and Preprocessing:\n",
        "- **Numpy**: Used for image array manipulation and preparing input data.\n",
        "- **Pandas**: For organizing and visualizing art style statistics (e.g., counts, distributions).\n",
        "\n",
        "### 2. Model Evaluation and Fine-tuning (Optional):\n",
        "- **Hyperparameter Tuning**: Tweaking the learning rate, batch size, etc., to improve model performance.\n",
        "- **Cross-validation**: Ensuring the model performs well on unseen data.\n",
        "\n",
        "---\n",
        "\n",
        "## In Summary:\n",
        "The main topics used in this project are:\n",
        "\n",
        "- **Machine Learning**: CNNs, transfer learning, model prediction, image preprocessing, and classification.\n",
        "- **Deep Learning**: Using pre-trained models, fine-tuning, and evaluating the model’s performance.\n",
        "- **Streamlit Web Development**: Interactive web app development, custom UI with CSS, file handling, and visualizations.\n",
        "- **Data Science**: Data manipulation, model deployment, and visualization using Pandas and Plotly.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "id": "atG_3xNvU720"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "The syntax of the command is incorrect.\n"
          ]
        }
      ],
      "source": [
        "!mkdir -p ~/.kaggle\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "s_XA6A_YU7zn",
        "outputId": "9e66b83c-065f-4b5b-c274-44a57986ebac"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "'cp' is not recognized as an internal or external command,\n",
            "operable program or batch file.\n"
          ]
        }
      ],
      "source": [
        "!cp kaggle.json ~/.kaggle/\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "FW1jquyKU7wu",
        "outputId": "381ed4f7-26cd-4372-8510-5930a1aa320f"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "'chmod' is not recognized as an internal or external command,\n",
            "operable program or batch file.\n"
          ]
        }
      ],
      "source": [
        "!chmod 600 ~/.kaggle/kaggle.json\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "8hv1Lom6Uec_",
        "outputId": "3a93e47f-896f-4478-84a2-e2d4e29a5e46"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "'chmod' is not recognized as an internal or external command,\n",
            "operable program or batch file.\n"
          ]
        }
      ],
      "source": [
        "!chmod 600 kaggle.json\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Tm2JYiyWVCGC",
        "outputId": "0d222bc9-c378-4822-8999-e57859643897"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Requirement already satisfied: kaggle in /usr/local/lib/python3.10/dist-packages (1.6.17)\n",
            "Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.10/dist-packages (from kaggle) (1.17.0)\n",
            "Requirement already satisfied: certifi>=2023.7.22 in /usr/local/lib/python3.10/dist-packages (from kaggle) (2024.12.14)\n",
            "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.8.2)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.32.3)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from kaggle) (4.67.1)\n",
            "Requirement already satisfied: python-slugify in /usr/local/lib/python3.10/dist-packages (from kaggle) (8.0.4)\n",
            "Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.2.3)\n",
            "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from kaggle) (6.2.0)\n",
            "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->kaggle) (0.5.1)\n",
            "Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.10/dist-packages (from python-slugify->kaggle) (1.3)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle) (3.4.0)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle) (3.10)\n"
          ]
        }
      ],
      "source": [
        "!pip install kaggle\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "OWi7m5uXSobo",
        "outputId": "1542c1cb-adab-4b3b-db59-612707a19593"
      },
      "outputs": [],
      "source": [
        "#!/bin/bash\n",
        "!kaggle datasets download steubk/wikiart"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "0ado9rLlWD67",
        "outputId": "32eea455-9996-4e3f-b87c-ee0f40ee5485"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "ERROR:root:Internal Python error in the inspect module.\n",
            "Below is the traceback from this internal error.\n",
            "\n",
            "\n",
            "KeyboardInterrupt\n",
            "\n"
          ]
        }
      ],
      "source": [
        "import zipfile\n",
        "\n",
        "with zipfile.ZipFile(\"/content/wikiart.zip\", \"r\") as zip_ref:\n",
        "    zip_ref.extractall(\"wikiart_data\")\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "QKleAJNUWFED"
      },
      "outputs": [],
      "source": [
        "!ls wikiart_data\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "WPI-bMGJWG-w"
      },
      "source": [
        "# **1. Data Preprocessing**"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qAUPwMBYWN8p"
      },
      "source": [
        "**Import Libraries**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "KwB9KW7vWLFy"
      },
      "outputs": [],
      "source": [
        "import os # For operating system\n",
        "import numpy as np\n",
        "import matplotlib.pyplot as plt # for plotting\n",
        "import tensorflow as tf\n",
        "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
        "from tensorflow.keras.applications import VGG16\n",
        "from tensorflow.keras import layers, models\n",
        "from sklearn.model_selection import train_test_split\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "jAfmnJEIb02C"
      },
      "outputs": [],
      "source": [
        "import tensorflow as tf\n",
        "from tensorflow.keras.applications import MobileNetV2\n",
        "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
        "from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint\n",
        "from tensorflow.keras.optimizers import AdamW\n",
        "from tensorflow.keras.mixed_precision import set_global_policy"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XlwZJ5DSXgGF"
      },
      "source": [
        "**(B) Load ans Explore the Data**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "2wIkoq7AXRpC",
        "outputId": "317f840d-2a2a-4021-e8c4-24a6485e6b2c"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "['Contemporary_Realism', 'Northern_Renaissance', 'Action_painting', 'wclasses.csv', 'Cubism', 'Color_Field_Painting', 'Realism', 'Rococo', 'Fauvism', 'Romanticism', 'High_Renaissance', 'New_Realism', 'Naive_Art_Primitivism', 'Synthetic_Cubism', 'Art_Nouveau_Modern', 'Baroque', 'Minimalism', 'Impressionism', 'Symbolism', 'Mannerism_Late_Renaissance', 'Abstract_Expressionism', 'Early_Renaissance', 'Analytical_Cubism', 'Post_Impressionism', 'Ukiyo_e', 'classes.csv', 'Pointillism', 'Pop_Art', 'Expressionism']\n"
          ]
        }
      ],
      "source": [
        "# set dataset directory path\n",
        "dataset_dir = '/content/wikiart_data'\n",
        "# check the classes available in the dataset\n",
        "classes = os.listdir(dataset_dir)\n",
        "print(classes)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 356
        },
        "id": "upLuzm4hcWtO",
        "outputId": "b71042b1-8292-4ba5-eff1-30183c52574d"
      },
      "outputs": [
        {
          "ename": "OSError",
          "evalue": "[Errno 28] No space left on device",
          "output_type": "error",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-27-d9e77e74453b>\u001b[0m in \u001b[0;36m<cell line: 13>\u001b[0;34m()\u001b[0m\n\u001b[1;32m     12\u001b[0m \u001b[0;31m# Extract the zip file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mzipfile\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mZipFile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/content/wikiart.zip\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"r\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mzip_ref\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m     \u001b[0mzip_ref\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextractall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/content/wikiart_data\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     15\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     16\u001b[0m \u001b[0;31m# Create directories if they don't exist\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/lib/python3.10/zipfile.py\u001b[0m in \u001b[0;36mextractall\u001b[0;34m(self, path, members, pwd)\u001b[0m\n\u001b[1;32m   1658\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1659\u001b[0m         \u001b[0;32mfor\u001b[0m \u001b[0mzipinfo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmembers\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1660\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_extract_member\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mzipinfo\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpwd\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1661\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1662\u001b[0m     \u001b[0;34m@\u001b[0m\u001b[0mclassmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/lib/python3.10/zipfile.py\u001b[0m in \u001b[0;36m_extract_member\u001b[0;34m(self, member, targetpath, pwd)\u001b[0m\n\u001b[1;32m   1713\u001b[0m         \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmember\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpwd\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpwd\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msource\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1714\u001b[0m              \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtargetpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"wb\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1715\u001b[0;31m             \u001b[0mshutil\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopyfileobj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msource\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1716\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1717\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mtargetpath\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/lib/python3.10/shutil.py\u001b[0m in \u001b[0;36mcopyfileobj\u001b[0;34m(fsrc, fdst, length)\u001b[0m\n\u001b[1;32m    196\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mbuf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    197\u001b[0m             \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 198\u001b[0;31m         \u001b[0mfdst_write\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbuf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    199\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    200\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_samefile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mOSError\u001b[0m: [Errno 28] No space left on device"
          ]
        }
      ],
      "source": [
        "import os\n",
        "import shutil\n",
        "import numpy as np\n",
        "from sklearn.model_selection import train_test_split\n",
        "import zipfile\n",
        "\n",
        "# Define paths\n",
        "dataset_dir = \"/content/wikiart_data\"  # All images in this folder\n",
        "train_dir = \"/content/train\"      # Folder for training images\n",
        "val_dir = \"/content/val\"          # Folder for validation images\n",
        "\n",
        "# Extract the zip file\n",
        "with zipfile.ZipFile(\"/content/wikiart.zip\", \"r\") as zip_ref:\n",
        "    zip_ref.extractall(\"/content/wikiart_data\")\n",
        "\n",
        "# Create directories if they don't exist\n",
        "os.makedirs(train_dir, exist_ok=True)\n",
        "os.makedirs(val_dir, exist_ok=True)\n",
        "\n",
        "# Create subdirectories for classes\n",
        "classes = [d for d in os.listdir(dataset_dir) if os.path.isdir(os.path.join(dataset_dir, d))]\n",
        "for cls in classes:\n",
        "    os.makedirs(os.path.join(train_dir, cls), exist_ok=True)\n",
        "    os.makedirs(os.path.join(val_dir, cls), exist_ok=True)\n",
        "\n",
        "# Split dataset\n",
        "for cls in classes:\n",
        "    cls_dir = os.path.join(dataset_dir, cls)\n",
        "    images = os.listdir(cls_dir)\n",
        "    # Check if the images list is empty before using train_test_split\n",
        "    if not images:\n",
        "        print(f\"Warning: No images found in {cls_dir}. Skipping this directory.\")\n",
        "        continue  # Skip to the next class\n",
        "    # added to handle if there is only one image in the directory\n",
        "    if len(images) == 1:\n",
        "        print(f\"Warning: Only one image found in {cls_dir}. Skipping this directory.\")\n",
        "        continue\n",
        "    train_images, val_images = train_test_split(images, test_size=0.2, random_state=42)  # 80% train, 20% val\n",
        "\n",
        "    # Move files to respective folders\n",
        "    for img in train_images:\n",
        "      try:\n",
        "        shutil.move(os.path.join(cls_dir, img), os.path.join(train_dir, cls, img))\n",
        "      except shutil.Error as e:\n",
        "        print(f\"Error moving file {img} from {cls_dir} to {train_dir}/{cls}: {e}\")\n",
        "    for img in val_images:\n",
        "      try:\n",
        "        shutil.move(os.path.join(cls_dir, img), os.path.join(val_dir, cls, img))\n",
        "      except shutil.Error as e:\n",
        "        print(f\"Error moving file {img} from {cls_dir} to {val_dir}/{cls}: {e}\")\n",
        "\n",
        "print(\"Dataset split completed.\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "KRDb2vLAX1m-"
      },
      "source": [
        "**(c) Image Resizing and Normalization**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "CPa6EY8bXxMN",
        "outputId": "6a2ac532-d5ec-4e80-e8e3-902ac557fdcc"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Found 65166 images belonging to 27 classes.\n",
            "Found 16278 images belonging to 27 classes.\n"
          ]
        }
      ],
      "source": [
        "# Set parameters\n",
        "image_size = (128, 128)  # Smaller image size for memory efficiency\n",
        "batch_size = 16  # Reduced batch size\n",
        "num_classes = 10  # Adjust based on your dataset\n",
        "\n",
        "# Data augmentation and rescaling\n",
        "train_datagen = ImageDataGenerator(\n",
        "    rescale=1.0 / 255,\n",
        "    rotation_range=20,\n",
        "    width_shift_range=0.2,\n",
        "    height_shift_range=0.2,\n",
        "    shear_range=0.2,\n",
        "    zoom_range=0.2,\n",
        "    horizontal_flip=True\n",
        ")\n",
        "\n",
        "val_datagen = ImageDataGenerator(rescale=1.0 / 255)\n",
        "\n",
        "# Data generators\n",
        "train_gen = train_datagen.flow_from_directory(\n",
        "    train_dir,\n",
        "    target_size=image_size,\n",
        "    batch_size=batch_size,\n",
        "    class_mode='categorical'\n",
        ")\n",
        "\n",
        "val_gen = val_datagen.flow_from_directory(\n",
        "    val_dir,\n",
        "    target_size=image_size,\n",
        "    batch_size=batch_size,\n",
        "    class_mode='categorical'\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "i9U4kDsnZ4rW"
      },
      "source": [
        "# **2. Model Architecture**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "_Lr-JPXQcBJo"
      },
      "outputs": [],
      "source": [
        "# Load pre-trained MobileNetV2 with frozen layers\n",
        "base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(128, 128, 3))\n",
        "base_model.trainable = False  # Freeze base layers to reduce computation\n",
        "\n",
        "# Build the model\n",
        "model = tf.keras.Sequential([\n",
        "    base_model,\n",
        "    tf.keras.layers.GlobalAveragePooling2D(),\n",
        "    tf.keras.layers.Dense(256, activation='relu'),\n",
        "    tf.keras.layers.Dropout(0.5),\n",
        "    tf.keras.layers.Dense(num_classes, activation='softmax', dtype='float32')  # Ensure outputs are float32\n",
        "])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "3iO9Hv-na53V"
      },
      "source": [
        "**(b) compile the model**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "M-IwFmTBZ9P5"
      },
      "outputs": [],
      "source": [
        "# Compile the model\n",
        "optimizer = AdamW(learning_rate=0.001)\n",
        "model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7dw_MJpYbHze"
      },
      "source": [
        "**(c) Train the model**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ro14UX1HbFx7"
      },
      "outputs": [],
      "source": [
        "# Callbacks\n",
        "checkpoint = ModelCheckpoint('best_model.h5', save_best_only=True, monitor='val_loss')\n",
        "early_stopping = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)\n",
        "\n",
        "# Train the model\n",
        "history = model.fit(\n",
        "    train_gen,\n",
        "    validation_data=val_gen,\n",
        "    epochs=20,\n",
        "    callbacks=[checkpoint, early_stopping]\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "B23w_jvmbpVd"
      },
      "source": [
        "# **4. Evaluate the model**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "RorPfsd_bmB2"
      },
      "outputs": [],
      "source": [
        "# Plot training and validation accuracy\n",
        "plt.plot(history.history['accuracy'], label='Training Accuracy')\n",
        "plt.plot(history.history['val_accuracy'], label='Validation Accuracy')\n",
        "plt.title('Model Accuracy')\n",
        "plt.xlabel('Epochs')\n",
        "plt.ylabel('Accuracy')\n",
        "plt.legend()\n",
        "plt.show()\n",
        "\n",
        "# Plot training and validation loss\n",
        "plt.plot(history.history['loss'], label='Training Loss')\n",
        "plt.plot(history.history['val_loss'], label='Validation Loss')\n",
        "plt.title('Model Loss')\n",
        "plt.xlabel('Epochs')\n",
        "plt.ylabel('Loss')\n",
        "plt.legend()\n",
        "plt.show()\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fB4FmTpIcEbc"
      },
      "source": [
        "# 5. Model testing"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "uJyJa4rfcD0Z"
      },
      "outputs": [],
      "source": [
        "from tensorflow.keras.preprocessing import image\n",
        "\n",
        "# Load a test image\n",
        "img_path = '/path_to_test_image/test_image.jpg'\n",
        "img = image.load_img(img_path, target_size=(img_size, img_size))\n",
        "img_array = image.img_to_array(img) / 255.0  # Normalize\n",
        "img_array = np.expand_dims(img_array, axis=0)\n",
        "\n",
        "# Predict the style\n",
        "prediction = model.predict(img_array)\n",
        "predicted_class = classes[np.argmax(prediction)]\n",
        "print(f\"Predicted Art Style: {predicted_class}\")\n"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "T4",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.9.19"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}