RichardErkhov commited on
Commit
3785b14
·
verified ·
1 Parent(s): 5e695bd

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +248 -0
README.md ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Llama-3.1-Swallow-8B-v0.1 - GGUF
11
+ - Model creator: https://huggingface.co/tokyotech-llm/
12
+ - Original model: https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Llama-3.1-Swallow-8B-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q2_K.gguf) | Q2_K | 2.96GB |
18
+ | [Llama-3.1-Swallow-8B-v0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
19
+ | [Llama-3.1-Swallow-8B-v0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.IQ3_S.gguf) | IQ3_S | 3.43GB |
20
+ | [Llama-3.1-Swallow-8B-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
21
+ | [Llama-3.1-Swallow-8B-v0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.IQ3_M.gguf) | IQ3_M | 3.52GB |
22
+ | [Llama-3.1-Swallow-8B-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q3_K.gguf) | Q3_K | 3.74GB |
23
+ | [Llama-3.1-Swallow-8B-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
24
+ | [Llama-3.1-Swallow-8B-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
25
+ | [Llama-3.1-Swallow-8B-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
26
+ | [Llama-3.1-Swallow-8B-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q4_0.gguf) | Q4_0 | 4.34GB |
27
+ | [Llama-3.1-Swallow-8B-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
28
+ | [Llama-3.1-Swallow-8B-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
29
+ | [Llama-3.1-Swallow-8B-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q4_K.gguf) | Q4_K | 4.58GB |
30
+ | [Llama-3.1-Swallow-8B-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
31
+ | [Llama-3.1-Swallow-8B-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q4_1.gguf) | Q4_1 | 4.78GB |
32
+ | [Llama-3.1-Swallow-8B-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q5_0.gguf) | Q5_0 | 5.21GB |
33
+ | [Llama-3.1-Swallow-8B-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
34
+ | [Llama-3.1-Swallow-8B-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q5_K.gguf) | Q5_K | 5.34GB |
35
+ | [Llama-3.1-Swallow-8B-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
36
+ | [Llama-3.1-Swallow-8B-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q5_1.gguf) | Q5_1 | 5.65GB |
37
+ | [Llama-3.1-Swallow-8B-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q6_K.gguf) | Q6_K | 6.14GB |
38
+ | [Llama-3.1-Swallow-8B-v0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/tokyotech-llm_-_Llama-3.1-Swallow-8B-v0.1-gguf/blob/main/Llama-3.1-Swallow-8B-v0.1.Q8_0.gguf) | Q8_0 | 7.95GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - en
47
+ - ja
48
+ library_name: transformers
49
+ pipeline_tag: text-generation
50
+ license: llama3.1
51
+ model_type: llama
52
+ ---
53
+
54
+ # Llama 3.1 Swallow - Built with Llama
55
+
56
+ Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models.
57
+ Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities.
58
+ We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and
59
+ coding contents, etc for continual pre-training.
60
+ The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese (see the Training Datasets section for details).
61
+ See the Swallow Model Index section to find other model variants.
62
+
63
+ # Release History
64
+
65
+ - **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1).
66
+
67
+ ## Swallow Model Index
68
+
69
+ |Model|Llama-3.1-Swallow|Llama-3.1-Swallow-Instruct|
70
+ |---|---|---|
71
+ |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) |
72
+ |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) |
73
+
74
+ ![logo](./logo.png)
75
+
76
+ The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/) provides large language models developed by the Swallow team.
77
+
78
+ ## Model Details
79
+
80
+ * **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture.
81
+ * **Language(s)**: Japanese English
82
+ * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)
83
+ * **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer.
84
+ * **Contact**: swallow[at]nlp.c.titech.ac.jp
85
+
86
+ ## Model Performance
87
+
88
+ ### Japanese tasks
89
+
90
+ |Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg|
91
+ |---|---|---|---|---|---|---|---|---|---|---|---|
92
+ | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| |
93
+ | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| |
94
+ | Qwen2-7B | 0.8776 | 0.4627 | 0.3766 | 0.8984 | 0.1716 | 0.5480 | 0.2080 | 0.1949 | 0.5871 | **0.4183** | 0.4743 |
95
+ | Qwen2.5-7B | **0.9240** | 0.4581 | 0.4259 | **0.9071** | **0.2162** | **0.6200** | 0.2295 | 0.1989 | **0.6337** | 0.2665 | 0.4880 |
96
+ | Sarashina2-7B | 0.7417 | 0.5089 | **0.6353** | 0.8683 | 0.1420 | 0.0800 | 0.2727 | 0.2015 | 0.3835 | 0.0000 | 0.3834 |
97
+ | Llama 3 8B | 0.8356 | 0.4454 | 0.4002 | 0.8881 | 0.1757 | 0.3320 | 0.2199 | 0.2087 | 0.4558 | 0.3311 | 0.4292 |
98
+ | Llama 3.1 8B | 0.8436 | 0.4461 | 0.4050 | 0.8962 | 0.1794 | 0.3560 | 0.2209 | 0.2077 | 0.4767 | 0.3274 | 0.4359 |
99
+ | Llama 3 Youko 8B | 0.8660 | 0.4902 | 0.5155 | 0.8947 | 0.2127 | 0.2840 | 0.2740 | 0.2180 | 0.4493 | 0.2183 | 0.4423 |
100
+ | Llama 3 Swallow 8B | 0.8945 | 0.4848 | 0.5640 | 0.8947 | 0.1981 | 0.4240 | 0.2758 | 0.2223 | 0.4699 | 0.2890 | 0.4717 |
101
+ | Llama 3.1 Swallow 8B | 0.9124 | **0.5092** | 0.6011 | 0.8991 | 0.2020 | 0.4600 | **0.2909** | **0.2313** | 0.5182 | 0.2811 | **0.4905** |
102
+
103
+ ### English tasks
104
+
105
+ |Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg|
106
+ |---|---|---|---|---|---|---|---|---|---|---|
107
+ | |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot| |
108
+ | |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1| |
109
+ | Qwen2-7B | 0.3740 | 0.6105 | 0.6006 | 0.3623 | 0.8916 | 0.7045 | 0.7748 | 0.5325 | **0.4622** | 0.5903 |
110
+ | Qwen2.5-7B | **0.3940** | 0.6011 | 0.5999 | **0.3743** | 0.8890 | **0.7424** | **0.8324** | 0.5620 | 0.4213 | **0.6018** |
111
+ | Sarashina2-7B | 0.3420 | 0.4784 | 0.5327 | 0.2911 | 0.8903 | 0.4267 | 0.1008 | 0.3746 | 0.0000 | 0.3818 |
112
+ | Llama 3 8B | 0.3760 | **0.7109** | **0.6124** | 0.3356 | 0.9032 | 0.6509 | 0.4936 | **0.6211** | 0.3793 | 0.5648 |
113
+ | Llama 3.1 8B | 0.3780 | 0.7017 | 0.6094 | 0.3330 | **0.9045** | 0.6525 | 0.5057 | 0.6176 | 0.3695 | 0.5636 |
114
+ | Llama 3 Youko 8B | 0.3500 | 0.6252 | 0.5885 | 0.3247 | 0.8959 | 0.5993 | 0.3571 | 0.5704 | 0.2793 | 0.5100 |
115
+ | Llama 3 Swallow 8B | 0.3520 | 0.6563 | 0.5901 | 0.3507 | 0.9006 | 0.6152 | 0.4875 | 0.5936 | 0.3323 | 0.5420 |
116
+ | Llama 3.1 Swallow 8B | 0.3800 | 0.6711 | 0.6057 | 0.3468 | 0.9032 | 0.6237 | 0.5110 | 0.6153 | 0.3622 | 0.5577 |
117
+
118
+ ## Evaluation Benchmarks
119
+
120
+ ### Japanese evaluation benchmarks
121
+
122
+ We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
123
+
124
+ - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022])
125
+ - Open-ended question answering (JEMHopQA [Ishii et al., 2024])
126
+ - Open-ended question answering (NIILC [関根, 2003])
127
+ - Machine reading comprehension (JSQuAD [Kurihara et al., 2022])
128
+ - Automatic summarization (XL-Sum [Hasan et al., 2021])
129
+ - Machine translation (WMT2020 ja-en [Barrault et al., 2020])
130
+ - Machine translation (WMT2020 en-ja [Barrault et al., 2020])
131
+ - Mathematical reasoning (MGSM [Shi et al., 2023])
132
+ - Academic exams (JMMLU [尹ら, 2024])
133
+ - Code generation (JHumanEval [佐藤ら, 2024])
134
+
135
+ ### English evaluation benchmarks
136
+
137
+ We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
138
+
139
+ - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018])
140
+ - Open-ended question answering (TriviaQA [Joshi et al., 2017])
141
+ - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018])
142
+ - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021])
143
+ - Natural language inference (HellaSwag [Zellers et al., 2019])
144
+ - Mathematical reasoning (GSM8K [Cobbe et al., 2021])
145
+ - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023])
146
+ - Academic exams (MMLU [Hendrycks et al., 2021])
147
+ - Code generation (HumanEval [Chen et al., 2021])
148
+
149
+ ## Training Datasets
150
+
151
+ ### Continual Pre-Training
152
+ The following datasets were used for continual pre-training.
153
+
154
+ - [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
155
+ - [Dclm-baseline-1.0](https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0)
156
+ - [English Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
157
+ - [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
158
+ - [Laboro ParaCorpus](https://github.com/laboroai/Laboro-ParaCorpus)
159
+ - [Swallow Corpus Version 2](https://arxiv.org/abs/2404.17733)
160
+ - [The-stack-v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train-smol-ids)
161
+
162
+ ## Risks and Limitations
163
+
164
+ The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
165
+
166
+ ## Acknowledgements
167
+
168
+ We thank Meta Research for releasing Llama 3.1 under a generous open license.
169
+
170
+ We received various supports including:
171
+
172
+ + AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain"
173
+ + NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics"
174
+ + MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models"
175
+ + AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html)
176
+
177
+ ## License
178
+
179
+ [META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/)
180
+
181
+ ## Authors
182
+
183
+ Here are the team members:
184
+ - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
185
+ - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
186
+ - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
187
+ - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html)
188
+ - [Koki Maeda](https://sites.google.com/view/silviase)
189
+ - [Kakeru Hattori](https://aya-se.vercel.app/)
190
+ - [Masanari Ohi](https://sites.google.com/view/masanariohi)
191
+ - [Taihei Shiotani](https://github.com/inatoihs)
192
+ - [Koshiro Saito](https://sites.google.com/view/koshiro-saito)
193
+ - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
194
+ - [Rio Yokota](https://twitter.com/rioyokota)
195
+ - [Kazuki Fujii](https://twitter.com/okoge_kaz)
196
+ - [Taishi Nakamura](https://twitter.com/Setuna7777_2)
197
+ - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
198
+ - [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
199
+ - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members:
200
+ - [Hiroya Takamura](https://sites.google.com/view/hjtakamura)
201
+
202
+ ## How to cite
203
+
204
+ If you find our work helpful, please feel free to cite these papers.
205
+
206
+ ```
207
+ @inproceedings{Fujii:COLM2024,
208
+ title={Continual Pre-Training for Cross-Lingual LLM Adaptation:
209
+ Enhancing Japanese Language Capabilities},
210
+ author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki
211
+ Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae
212
+ Mizuki and Rio Yokota and Naoaki Okazaki},
213
+ booktitle="Proceedings of the First Conference on Language Modeling",
214
+ series={COLM},
215
+ pages="(to appear)",
216
+ year="2024",
217
+ month=oct,
218
+ address={University of Pennsylvania, USA},
219
+ }
220
+
221
+ @inproceedings{Okazaki:COLM2024,
222
+ title={Building a Large Japanese Web Corpus for Large Language Models},
223
+ author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki
224
+ Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay
225
+ Loem and Rio Yokota and Sakae Mizuki},
226
+ booktitle="Proceedings of the First Conference on Language Modeling",
227
+ series={COLM},
228
+ pages="(to appear)",
229
+ year="2024",
230
+ month=oct,
231
+ address={University of Pennsylvania, USA},
232
+ }
233
+ ```
234
+
235
+ ### References
236
+
237
+ ```tex
238
+ @misc{dubey2024llama3herdmodels,
239
+ title={The Llama 3 Herd of Models},
240
+ author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.},
241
+ year={2024},
242
+ eprint={2407.21783},
243
+ archivePrefix={arXiv},
244
+ primaryClass={cs.AI},
245
+ url={https://arxiv.org/abs/2407.21783},
246
+ }
247
+ ```
248
+