Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) baby-python-mistral-1L-tiny-lua-ft - GGUF - Model creator: https://huggingface.co/nilq/ - Original model: https://huggingface.co/nilq/baby-python-mistral-1L-tiny-lua-ft/ | Name | Quant method | Size | | ---- | ---- | ---- | | [baby-python-mistral-1L-tiny-lua-ft.Q2_K.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q2_K.gguf) | Q2_K | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.IQ3_XS.gguf) | IQ3_XS | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.IQ3_S.gguf) | IQ3_S | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q3_K_S.gguf) | Q3_K_S | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.IQ3_M.gguf) | IQ3_M | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q3_K.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q3_K.gguf) | Q3_K | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q3_K_M.gguf) | Q3_K_M | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q3_K_L.gguf) | Q3_K_L | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.IQ4_XS.gguf) | IQ4_XS | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q4_0.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q4_0.gguf) | Q4_0 | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.IQ4_NL.gguf) | IQ4_NL | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q4_K_S.gguf) | Q4_K_S | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q4_K.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q4_K.gguf) | Q4_K | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q4_K_M.gguf) | Q4_K_M | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q4_1.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q4_1.gguf) | Q4_1 | 0.02GB | | [baby-python-mistral-1L-tiny-lua-ft.Q5_0.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q5_0.gguf) | Q5_0 | 0.03GB | | [baby-python-mistral-1L-tiny-lua-ft.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q5_K_S.gguf) | Q5_K_S | 0.03GB | | [baby-python-mistral-1L-tiny-lua-ft.Q5_K.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q5_K.gguf) | Q5_K | 0.03GB | | [baby-python-mistral-1L-tiny-lua-ft.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q5_K_M.gguf) | Q5_K_M | 0.03GB | | [baby-python-mistral-1L-tiny-lua-ft.Q5_1.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q5_1.gguf) | Q5_1 | 0.03GB | | [baby-python-mistral-1L-tiny-lua-ft.Q6_K.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q6_K.gguf) | Q6_K | 0.03GB | | [baby-python-mistral-1L-tiny-lua-ft.Q8_0.gguf](https://huggingface.co/RichardErkhov/nilq_-_baby-python-mistral-1L-tiny-lua-ft-gguf/blob/main/baby-python-mistral-1L-tiny-lua-ft.Q8_0.gguf) | Q8_0 | 0.04GB | Original model description: --- base_model: nilq/baby-python-mistral-1L-tiny-base tags: - generated_from_trainer datasets: - nilq/small-lua-stack metrics: - accuracy model-index: - name: baby-python-mistral-1L-tiny-lua-ft results: - task: name: Causal Language Modeling type: text-generation dataset: name: nilq/small-lua-stack type: nilq/small-lua-stack metrics: - name: Accuracy type: accuracy value: 0.4940860736493237 --- # baby-python-mistral-1L-tiny-lua-ft This model is a fine-tuned version of [nilq/baby-python-mistral-1L-tiny-base](https://huggingface.co/nilq/baby-python-mistral-1L-tiny-base) on the nilq/small-lua-stack dataset. This is the Lua model in the paper [Tracking Universal Features Through Fine-Tuning and Model Merging](https://arxiv.org/abs/2410.12391). It achieves the following results on the evaluation set: - Loss: 2.4518 - Accuracy: 0.4941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2