File size: 1,346 Bytes
7c74c09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
math-doc-refining-lm - AWQ
- Model creator: https://huggingface.co/gair-prox/
- Original model: https://huggingface.co/gair-prox/math-doc-refining-lm/
Original model description:
---
license: apache-2.0
datasets:
- gair-prox/RedPajama-pro
language:
- en
base_model:
- gair-prox/RedPJ-ProX-0.7B
pipeline_tag: text-generation
library_name: transformers
tags:
- llama
- code
---
# Math-doc-refining-lm
<p align="center">
<img src="prox-teaser.png">
</p>
[ArXiv](http://arxiv.org/abs/2409.17115) | [Code](https://github.com/GAIR-NLP/program-every-example)
**Math-doc-refining-lm** is an adapted [0.7B-ProX](https://huggingface.co/gair-prox/RedPJ-ProX-0.7B) model, fine-tuned for doc level refining via program generation, and can be applied over math pre-training corpus such as open-web-math.
<p align="center">
<img src="func_design.png">
</p>
### Citation
```
@article{zhou2024programming,
title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale},
author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei},
journal={arXiv preprint arXiv:2409.17115},
year={2024}
}
```
|