File size: 6,277 Bytes
8c4db41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Qwen2.5-Coder-0.5B-Instruct-MLX - GGUF
- Model creator: https://huggingface.co/TheBlueObserver/
- Original model: https://huggingface.co/TheBlueObserver/Qwen2.5-Coder-0.5B-Instruct-MLX/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q2_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q2_K.gguf) | Q2_K | 0.32GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.IQ3_XS.gguf) | IQ3_XS | 0.32GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.IQ3_S.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.IQ3_S.gguf) | IQ3_S | 0.32GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q3_K_S.gguf) | Q3_K_S | 0.32GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.IQ3_M.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.IQ3_M.gguf) | IQ3_M | 0.32GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q3_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q3_K.gguf) | Q3_K | 0.33GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q3_K_M.gguf) | Q3_K_M | 0.33GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q3_K_L.gguf) | Q3_K_L | 0.34GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.IQ4_XS.gguf) | IQ4_XS | 0.33GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_0.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_0.gguf) | Q4_0 | 0.33GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.IQ4_NL.gguf) | IQ4_NL | 0.33GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_K_S.gguf) | Q4_K_S | 0.36GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_K.gguf) | Q4_K | 0.37GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_K_M.gguf) | Q4_K_M | 0.37GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_1.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q4_1.gguf) | Q4_1 | 0.35GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_0.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_0.gguf) | Q5_0 | 0.37GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_K_S.gguf) | Q5_K_S | 0.38GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_K.gguf) | Q5_K | 0.39GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_K_M.gguf) | Q5_K_M | 0.39GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_1.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q5_1.gguf) | Q5_1 | 0.39GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q6_K.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q6_K.gguf) | Q6_K | 0.47GB |
| [Qwen2.5-Coder-0.5B-Instruct-MLX.Q8_0.gguf](https://huggingface.co/RichardErkhov/TheBlueObserver_-_Qwen2.5-Coder-0.5B-Instruct-MLX-gguf/blob/main/Qwen2.5-Coder-0.5B-Instruct-MLX.Q8_0.gguf) | Q8_0 | 0.49GB |
Original model description:
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct/blob/main/LICENSE
language:
- en
base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
- mlx
---
# TheBlueObserver/Qwen2.5-Coder-0.5B-Instruct-MLX
The Model [TheBlueObserver/Qwen2.5-Coder-0.5B-Instruct-MLX](https://huggingface.co/TheBlueObserver/Qwen2.5-Coder-0.5B-Instruct-MLX) was
converted to MLX format from [Qwen/Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct)
using mlx-lm version **0.20.2**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("TheBlueObserver/Qwen2.5-Coder-0.5B-Instruct-MLX")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|