uploaded readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Quantization made by Richard Erkhov.
|
| 2 |
+
|
| 3 |
+
[Github](https://github.com/RichardErkhov)
|
| 4 |
+
|
| 5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
| 6 |
+
|
| 7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
MiniPLM-llama3.1-212M - AWQ
|
| 11 |
+
- Model creator: https://huggingface.co/MiniLLM/
|
| 12 |
+
- Original model: https://huggingface.co/MiniLLM/MiniPLM-llama3.1-212M/
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
Original model description:
|
| 18 |
+
---
|
| 19 |
+
library_name: transformers
|
| 20 |
+
license: apache-2.0
|
| 21 |
+
datasets:
|
| 22 |
+
- monology/pile-uncopyrighted
|
| 23 |
+
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5
|
| 24 |
+
language:
|
| 25 |
+
- en
|
| 26 |
+
metrics:
|
| 27 |
+
- accuracy
|
| 28 |
+
pipeline_tag: text-generation
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
# MiniPLM-llama3.1-212M
|
| 32 |
+
|
| 33 |
+
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)
|
| 34 |
+
|
| 35 |
+
**MiniPLM-llama3.1-212M** is a 212M model with the [LLaMA3.1 achitecture](https://arxiv.org/abs/2407.21783) pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model.
|
| 36 |
+
This model shows the flexibility of the MiniPLM framework in conducting knowledge distillation across model families.
|
| 37 |
+
|
| 38 |
+
We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.
|
| 39 |
+
|
| 40 |
+
<p align='left'>
|
| 41 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000">
|
| 42 |
+
</p>
|
| 43 |
+
|
| 44 |
+
## Evaluation
|
| 45 |
+
|
| 46 |
+
MiniPLM models achieves better performance given the same computation and scales well across model sizes:
|
| 47 |
+
|
| 48 |
+
<p align='left'>
|
| 49 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
|
| 50 |
+
</p>
|
| 51 |
+
|
| 52 |
+
## Baseline Models
|
| 53 |
+
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-LLama3.1-130M)
|
| 54 |
+
|
| 55 |
+
## Citation
|
| 56 |
+
|
| 57 |
+
```bibtex
|
| 58 |
+
@article{miniplm,
|
| 59 |
+
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
|
| 60 |
+
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
|
| 61 |
+
journal={arXiv preprint arXiv:2410.17215},
|
| 62 |
+
year={2024}
|
| 63 |
+
}
|
| 64 |
+
```
|
| 65 |
+
|