uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
MiniPLM-llama3.1-212M - AWQ
|
11 |
+
- Model creator: https://huggingface.co/MiniLLM/
|
12 |
+
- Original model: https://huggingface.co/MiniLLM/MiniPLM-llama3.1-212M/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
library_name: transformers
|
20 |
+
license: apache-2.0
|
21 |
+
datasets:
|
22 |
+
- monology/pile-uncopyrighted
|
23 |
+
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5
|
24 |
+
language:
|
25 |
+
- en
|
26 |
+
metrics:
|
27 |
+
- accuracy
|
28 |
+
pipeline_tag: text-generation
|
29 |
+
---
|
30 |
+
|
31 |
+
# MiniPLM-llama3.1-212M
|
32 |
+
|
33 |
+
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)
|
34 |
+
|
35 |
+
**MiniPLM-llama3.1-212M** is a 212M model with the [LLaMA3.1 achitecture](https://arxiv.org/abs/2407.21783) pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model.
|
36 |
+
This model shows the flexibility of the MiniPLM framework in conducting knowledge distillation across model families.
|
37 |
+
|
38 |
+
We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.
|
39 |
+
|
40 |
+
<p align='left'>
|
41 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000">
|
42 |
+
</p>
|
43 |
+
|
44 |
+
## Evaluation
|
45 |
+
|
46 |
+
MiniPLM models achieves better performance given the same computation and scales well across model sizes:
|
47 |
+
|
48 |
+
<p align='left'>
|
49 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
|
50 |
+
</p>
|
51 |
+
|
52 |
+
## Baseline Models
|
53 |
+
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-LLama3.1-130M)
|
54 |
+
|
55 |
+
## Citation
|
56 |
+
|
57 |
+
```bibtex
|
58 |
+
@article{miniplm,
|
59 |
+
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
|
60 |
+
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
|
61 |
+
journal={arXiv preprint arXiv:2410.17215},
|
62 |
+
year={2024}
|
63 |
+
}
|
64 |
+
```
|
65 |
+
|