RichardErkhov commited on
Commit
0ee5542
·
verified ·
1 Parent(s): dbcb0ff

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ MiniPLM-llama3.1-212M - AWQ
11
+ - Model creator: https://huggingface.co/MiniLLM/
12
+ - Original model: https://huggingface.co/MiniLLM/MiniPLM-llama3.1-212M/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ library_name: transformers
20
+ license: apache-2.0
21
+ datasets:
22
+ - monology/pile-uncopyrighted
23
+ - MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5
24
+ language:
25
+ - en
26
+ metrics:
27
+ - accuracy
28
+ pipeline_tag: text-generation
29
+ ---
30
+
31
+ # MiniPLM-llama3.1-212M
32
+
33
+ [paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)
34
+
35
+ **MiniPLM-llama3.1-212M** is a 212M model with the [LLaMA3.1 achitecture](https://arxiv.org/abs/2407.21783) pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model.
36
+ This model shows the flexibility of the MiniPLM framework in conducting knowledge distillation across model families.
37
+
38
+ We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.
39
+
40
+ <p align='left'>
41
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000">
42
+ </p>
43
+
44
+ ## Evaluation
45
+
46
+ MiniPLM models achieves better performance given the same computation and scales well across model sizes:
47
+
48
+ <p align='left'>
49
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
50
+ </p>
51
+
52
+ ## Baseline Models
53
+ + [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-LLama3.1-130M)
54
+
55
+ ## Citation
56
+
57
+ ```bibtex
58
+ @article{miniplm,
59
+ title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
60
+ author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
61
+ journal={arXiv preprint arXiv:2410.17215},
62
+ year={2024}
63
+ }
64
+ ```
65
+