RegisGraptin commited on
Commit
2683d1e
·
1 Parent(s): b7f2664

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1998.41 +/- 41.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:981bc2e74a63ad2f38609a42f440f8c88218c1fb732e2dc696ea9aebb1cca5f8
3
+ size 129154
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe04e1f9e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe04e1f9ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe04e1f9f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe04e1fe040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe04e1fe0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe04e1fe160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe04e1fe1f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe04e1fe280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe04e1fe310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe04e1fe3a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe04e1fe430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe04e1fe4c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe04e1f3c30>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
27
+ "optimizer_kwargs": {
28
+ "alpha": 0.99,
29
+ "eps": 1e-05,
30
+ "weight_decay": 0
31
+ }
32
+ },
33
+ "observation_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 28
39
+ ],
40
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
41
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
42
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
43
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "_np_random": null
45
+ },
46
+ "action_space": {
47
+ ":type:": "<class 'gym.spaces.box.Box'>",
48
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
49
+ "dtype": "float32",
50
+ "_shape": [
51
+ 8
52
+ ],
53
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
54
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
55
+ "bounded_below": "[ True True True True True True True True]",
56
+ "bounded_above": "[ True True True True True True True True]",
57
+ "_np_random": null
58
+ },
59
+ "n_envs": 4,
60
+ "num_timesteps": 2000000,
61
+ "_total_timesteps": 2000000,
62
+ "_num_timesteps_at_start": 0,
63
+ "seed": null,
64
+ "action_noise": null,
65
+ "start_time": 1674318871768387760,
66
+ "learning_rate": 0.001,
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPLw9j4thsy7k5AFP2ZqzT93EzE/tYaAv8t/LD+6fxO//ngoPznwDD4cYZg/q/BDQG+5Kr+lAK+/RioIv9Q0xj7zWYo/TGybv2DqAT/EET6++6eJvyQ4aDrKtRq/Qj/zPmOE6r9FO+g+LEPXPmgu57+xnIs90SOovW3rAz8V5fQ/ufK9vy6Gdj9cFN490KN8v43DUD9BExJAVP4cP3LE7b6+ds6/G7KAPqJalD3T476+riyXPqymi74YRj4/1m59vi8Jb7+Fiuo/9XPpvr8RqD2zuQs/RTvoPixD1z5oLue/nxx5Pim2dL99SdQ9CWz1P8YEiD+J39U/kiDevvqKb7/Lfmk/RoVivR7UDr9MRmQ9aPpEv8Lo3D+UOjU/3pKEvpfaKD4ilPo/jf0VPwN/o786Z02/7rbYvszwgz9c22o+Y4Tqv0U76D44ORjA2L0NP2pSG0CbwCY+HSgFP9G6SL/ZM/o+iE0ZwZfmNL0dEz9AzzJpPzVj8rwNPDXAgvuYvHQfy78k8Vw7ROq9wACvB8H8fcY/V3eNOzYAocDiNafAXeqKvxhYHD4GGPu/lFSKvGOE6r++GQ3AODkYwGgu57+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
75
+ },
76
+ "_last_episode_starts": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_original_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAnGaO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAr9mBPQAAAACNpOu/AAAAAJXuA74AAAAAwVb5PwAAAAAgFa+9AAAAABbj3T8AAAAAGKNlvQAAAABDLeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWXsCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBOcf7wAAAAAJxv3vwAAAADMdY69AAAAALiDAEAAAAAAOat0PQAAAAC2ueg/AAAAAHzXp70AAAAAmx3kvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEQk1bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBqkcE9AAAAAJ4x9L8AAAAAF7qhvQAAAAC5c+s/AAAAAOVngz0AAAAAoE7aPwAAAADNJhm9AAAAAJqD3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMQZa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvrUPPQAAAAAmQ9m/AAAAAIA6mzwAAAAA+SMAQAAAAAC/hie9AAAAAFxI6z8AAAAAZJ9kuwAAAACus/a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
83
+ },
84
+ "_episode_num": 0,
85
+ "use_sde": true,
86
+ "sde_sample_freq": -1,
87
+ "_current_progress_remaining": 0.0,
88
+ "ep_info_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8C7OzIFNeMAWyUTegDjAF0lEdAyPTvYr8R+XV9lChoBkdAnr3WB8QZoGgHTegDaAhHQMj1Oe23KCB1fZQoaAZHQJ34Hx3FDOVoB03oA2gIR0DI9dHQ8fV7dX2UKGgGR0CenEKqGUOeaAdN6ANoCEdAyPZNgx8D0XV9lChoBkdAnQz5FspG4WgHTegDaAhHQMj36WnbZe11fZQoaAZHQJ9GFx3mmtRoB03oA2gIR0DI+DOiBXjmdX2UKGgGR0CfAPW7OE/TaAdN6ANoCEdAyPjMNXHR1HV9lChoBkdAn21wzHjp92gHTegDaAhHQMj5S9dmg8N1fZQoaAZHQJ7j1E7W/ahoB03oA2gIR0DI+uyC+UQkdX2UKGgGR0CfJAeiSJTEaAdN6ANoCEdAyPs3FglWwXV9lChoBkdAn9KqXSjQA2gHTegDaAhHQMj70QrMC911fZQoaAZHQJ8yHBrN4aBoB03oA2gIR0DI/FF6C17ZdX2UKGgGR0CfsYECNjslaAdN6ANoCEdAyP3nR/EwWXV9lChoBkdAnypli4J/omgHTegDaAhHQMj+M1aW5Yp1fZQoaAZHQJ+RmfwqiGpoB03oA2gIR0DI/suQMhHLdX2UKGgGR0Ceo9MaS9uhaAdN6ANoCEdAyP9HuP3i73V9lChoBkdAndupKBd2PmgHTegDaAhHQMkA2vQWvbJ1fZQoaAZHQJ+qUY2sJY1oB03oA2gIR0DJASVNtZV5dX2UKGgGR0Cfekghr30xaAdN6ANoCEdAyQHEYoAn2XV9lChoBkdAn2U8Jlar3mgHTegDaAhHQMkCQdMK1G91fZQoaAZHQJ6VkT37DVJoB03oA2gIR0DJA9doakyldX2UKGgGR0CfEJPa+N96aAdN6ANoCEdAyQQhle4TbnV9lChoBkdAnkaJDqnm72gHTegDaAhHQMkEvRDCxeN1fZQoaAZHQJzGVVlwtJ5oB03oA2gIR0DJBTySRr8BdX2UKGgGR0CeX1sBQvYfaAdN6ANoCEdAyQbePkq+anV9lChoBkdAoBsWFev6j2gHTegDaAhHQMkHJ3c580F1fZQoaAZHQJ83nlPrOZ9oB03oA2gIR0DJB8Kh+OOsdX2UKGgGR0CfMLTa0x/NaAdN6ANoCEdAyQhA69TP0XV9lChoBkdAoBzVC7btZ2gHTegDaAhHQMkJ5LLyMDR1fZQoaAZHQJ5EulSCOFRoB03oA2gIR0DJCi3ysjmkdX2UKGgGR0CgJX1SOzY3aAdN6ANoCEdAyQrJVBlcyHV9lChoBkdAnw881fmcOWgHTegDaAhHQMkLQ25H3Dh1fZQoaAZHQJ5tED6nBLxoB03oA2gIR0DJDNqJ0nw5dX2UKGgGR0CeEPDWK/EgaAdN6ANoCEdAyQ0lEkSmInV9lChoBkdAnliJRKpT/GgHTegDaAhHQMkNwGSpzcR1fZQoaAZHQJ+zO/N7jT9oB03oA2gIR0DJDjz/wRXfdX2UKGgGR0Cf2EPSlWOqaAdN6ANoCEdAyQ/Ng/keZHV9lChoBkdAnfSMTFl05mgHTegDaAhHQMkQGVNHpbF1fZQoaAZHQJ8KmQSzw+doB03oA2gIR0DJELNrAP/adX2UKGgGR0CezXgjyFwlaAdN6ANoCEdAyREyGwiaAnV9lChoBkdAnyVBffGdZ2gHTegDaAhHQMkSy7fP5YZ1fZQoaAZHQJ/a5I9TxXpoB03oA2gIR0DJExgO4G2UdX2UKGgGR0CfpdACGN70aAdN6ANoCEdAyROzCgsbvXV9lChoBkdAnt7d34bjtGgHTegDaAhHQMkUL6Rp1zR1fZQoaAZHQJ+Q35ULlV9oB03oA2gIR0DJFcdT5wfhdX2UKGgGR0CfUhHZsbeeaAdN6ANoCEdAyRYVzeXRgXV9lChoBkdAnulsZP2wmmgHTegDaAhHQMkWsZDArQR1fZQoaAZHQJ75k9nscABoB03oA2gIR0DJFzC3qiXZdX2UKGgGR0CfGgNnGsFMaAdN6ANoCEdAyRja0D2alXV9lChoBkdAnlRJRTCLuWgHTegDaAhHQMkZJvHtF8Z1fZQoaAZHwDVXAi3XqaBoB0uTaAhHQMkZlp22Xsx1fZQoaAZHQJwaff8/D+BoB03oA2gIR0DJGcHL3bmEdX2UKGgGR0Cew+ckMTewaAdN6ANoCEdAyRo+W43FUHV9lChoBkdAnW3zxwyZa2gHTegDaAhHQMkb2IcaOxV1fZQoaAZHQJ/BsO6NEPVoB03oA2gIR0DJHJiFqSHNdX2UKGgGR0Cf+qLzPKMeaAdN6ANoCEdAyRzEOAAhjnV9lChoBkdAoCt25paibmgHTegDaAhHQMkdQwV0tAd1fZQoaAZHQJ++V3zMA3loB03oA2gIR0DJHuSPOpsHdX2UKGgGR0CgAyVvES/TaAdN6ANoCEdAyR+iKZ2IPHV9lChoBkdAoFR1DlYEGWgHTegDaAhHQMkf4z+NtIl1fZQoaAZHQJ9b39m6GxloB03oA2gIR0DJIKQBV+7UdX2UKGgGR0CenwtKZlWfaAdN6ANoCEdAySLfc45tFnV9lChoBkdAn9NWMbWEsmgHTegDaAhHQMkjneLm6oV1fZQoaAZHQJ8XuQ9zOopoB03oA2gIR0DJI8fMINVjdX2UKGgGR0Cfvr++dsi0aAdN6ANoCEdAySRDUBnzx3V9lChoBkdAn/QBVMmF8GgHTegDaAhHQMkl8Uz9CNV1fZQoaAZHQJ6/qpNsWO9oB03oA2gIR0DJJq+F10T2dX2UKGgGR0CfIuIXj2i+aAdN6ANoCEdAySbdLW7OFHV9lChoBkdAn18JlOGj9GgHTegDaAhHQMknYyfcvdx1fZQoaAZHQJ8rKGetjkNoB03oA2gIR0DJKP+vwEyMdX2UKGgGR0CgB42ECeVcaAdN6ANoCEdAySm9maH9FXV9lChoBkdAnptCr5qM32gHTegDaAhHQMkp6OlXRw91fZQoaAZHQKA7fWT5ftxoB03oA2gIR0DJKmcl7dBTdX2UKGgGR0CgH9N7rs0IaAdN6ANoCEdAySwBqB3A23V9lChoBkdAn2o4raufVmgHTegDaAhHQMksvpFkQPJ1fZQoaAZHQJ7Cq3jMmnhoB03oA2gIR0DJLOllf7aadX2UKGgGR0CehhUz9CNTaAdN6ANoCEdAyS1osBhhIHV9lChoBkfAM7/FzdUKiWgHS1xoCEdAyS2vwzch1XV9lChoBkdAn4ETABT4tmgHTegDaAhHQMkvBmGM4tJ1fZQoaAZHQJwLb/6wdKdoB03oA2gIR0DJL8p80DU3dX2UKGgGR0Ces6y8BdUsaAdN6ANoCEdAyS/2t9QXRHV9lChoBkdAnyHIAn2IwmgHTegDaAhHQMkwwFuNxVB1fZQoaAZHQJyHdHnU2DRoB03oA2gIR0DJMiDuc+aCdX2UKGgGR0Ce3a3WnTAnaAdN6ANoCEdAyTLjULlV+HV9lChoBkdAnfNupKjBVWgHTegDaAhHQMkzDOYplSV1fZQoaAZHQJ1bp4fOlftoB03oA2gIR0DJM9HoTwlTdX2UKGgGR0CdpOdkrf+CaAdN6ANoCEdAyTUpbnHNo3V9lChoBkdAQFRTQ3PzF2gHS19oCEdAyTV1ie/Ya3V9lChoBkdAnvuUnssxwmgHTegDaAhHQMk18C6xxDN1fZQoaAZHQJ3+mlHjIaNoB03oA2gIR0DJNh2mk30gdX2UKGgGR0Ce2x114gRsaAdN6ANoCEdAyTbyVzIV/XV9lChoBkdAn99A2/BWP2gHTegDaAhHQMk4l8T8HfN1fZQoaAZHQJ9ptzmwJPZoB03oA2gIR0DJORAaLn9vdX2UKGgGR0CeR5qfOD8MaAdN6ANoCEdAyTk6RzRx+HV9lChoBkdAnp8VtfoicGgHTegDaAhHQMk6AT5ftyB1fZQoaAZHQJzxP8uSOipoB03oA2gIR0DJO6A6IWP+dX2UKGgGR0Cd6hTQE6kqaAdN6ANoCEdAyTwXdLxqf3V9lChoBkdAnPa3Wvr4WWgHTegDaAhHQMk8QTqKP4p1fZQoaAZHQJ1KHLr5ZbJoB03oA2gIR0DJPRDziCJ5dX2UKGgGR0CenQ6ErXlKaAdN6ANoCEdAyT6zF6RhdHVlLg=="
91
+ },
92
+ "ep_success_buffer": {
93
+ ":type:": "<class 'collections.deque'>",
94
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
+ },
96
+ "_n_updates": 50000,
97
+ "n_steps": 10,
98
+ "gamma": 0.99,
99
+ "gae_lambda": 0.9,
100
+ "ent_coef": 0.0,
101
+ "vf_coef": 0.4,
102
+ "max_grad_norm": 0.5,
103
+ "normalize_advantage": false
104
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c664116d64817890eb7139c93c438a57cc76b8f5d4e6dd3d2b5f23683a35d74
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6de314838256e65fa5f89c419c8f40314fc5d53a6cccdbaf30b50b6f57d7a2c
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe04e1f9e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe04e1f9ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe04e1f9f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe04e1fe040>", "_build": "<function ActorCriticPolicy._build at 0x7fe04e1fe0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe04e1fe160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe04e1fe1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe04e1fe280>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe04e1fe310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe04e1fe3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe04e1fe430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe04e1fe4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe04e1f3c30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674318871768387760, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPLw9j4thsy7k5AFP2ZqzT93EzE/tYaAv8t/LD+6fxO//ngoPznwDD4cYZg/q/BDQG+5Kr+lAK+/RioIv9Q0xj7zWYo/TGybv2DqAT/EET6++6eJvyQ4aDrKtRq/Qj/zPmOE6r9FO+g+LEPXPmgu57+xnIs90SOovW3rAz8V5fQ/ufK9vy6Gdj9cFN490KN8v43DUD9BExJAVP4cP3LE7b6+ds6/G7KAPqJalD3T476+riyXPqymi74YRj4/1m59vi8Jb7+Fiuo/9XPpvr8RqD2zuQs/RTvoPixD1z5oLue/nxx5Pim2dL99SdQ9CWz1P8YEiD+J39U/kiDevvqKb7/Lfmk/RoVivR7UDr9MRmQ9aPpEv8Lo3D+UOjU/3pKEvpfaKD4ilPo/jf0VPwN/o786Z02/7rbYvszwgz9c22o+Y4Tqv0U76D44ORjA2L0NP2pSG0CbwCY+HSgFP9G6SL/ZM/o+iE0ZwZfmNL0dEz9AzzJpPzVj8rwNPDXAgvuYvHQfy78k8Vw7ROq9wACvB8H8fcY/V3eNOzYAocDiNafAXeqKvxhYHD4GGPu/lFSKvGOE6r++GQ3AODkYwGgu57+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAnGaO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAr9mBPQAAAACNpOu/AAAAAJXuA74AAAAAwVb5PwAAAAAgFa+9AAAAABbj3T8AAAAAGKNlvQAAAABDLeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWXsCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBOcf7wAAAAAJxv3vwAAAADMdY69AAAAALiDAEAAAAAAOat0PQAAAAC2ueg/AAAAAHzXp70AAAAAmx3kvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEQk1bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBqkcE9AAAAAJ4x9L8AAAAAF7qhvQAAAAC5c+s/AAAAAOVngz0AAAAAoE7aPwAAAADNJhm9AAAAAJqD3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMQZa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvrUPPQAAAAAmQ9m/AAAAAIA6mzwAAAAA+SMAQAAAAAC/hie9AAAAAFxI6z8AAAAAZJ9kuwAAAACus/a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8C7OzIFNeMAWyUTegDjAF0lEdAyPTvYr8R+XV9lChoBkdAnr3WB8QZoGgHTegDaAhHQMj1Oe23KCB1fZQoaAZHQJ34Hx3FDOVoB03oA2gIR0DI9dHQ8fV7dX2UKGgGR0CenEKqGUOeaAdN6ANoCEdAyPZNgx8D0XV9lChoBkdAnQz5FspG4WgHTegDaAhHQMj36WnbZe11fZQoaAZHQJ9GFx3mmtRoB03oA2gIR0DI+DOiBXjmdX2UKGgGR0CfAPW7OE/TaAdN6ANoCEdAyPjMNXHR1HV9lChoBkdAn21wzHjp92gHTegDaAhHQMj5S9dmg8N1fZQoaAZHQJ7j1E7W/ahoB03oA2gIR0DI+uyC+UQkdX2UKGgGR0CfJAeiSJTEaAdN6ANoCEdAyPs3FglWwXV9lChoBkdAn9KqXSjQA2gHTegDaAhHQMj70QrMC911fZQoaAZHQJ8yHBrN4aBoB03oA2gIR0DI/FF6C17ZdX2UKGgGR0CfsYECNjslaAdN6ANoCEdAyP3nR/EwWXV9lChoBkdAnypli4J/omgHTegDaAhHQMj+M1aW5Yp1fZQoaAZHQJ+RmfwqiGpoB03oA2gIR0DI/suQMhHLdX2UKGgGR0Ceo9MaS9uhaAdN6ANoCEdAyP9HuP3i73V9lChoBkdAndupKBd2PmgHTegDaAhHQMkA2vQWvbJ1fZQoaAZHQJ+qUY2sJY1oB03oA2gIR0DJASVNtZV5dX2UKGgGR0Cfekghr30xaAdN6ANoCEdAyQHEYoAn2XV9lChoBkdAn2U8Jlar3mgHTegDaAhHQMkCQdMK1G91fZQoaAZHQJ6VkT37DVJoB03oA2gIR0DJA9doakyldX2UKGgGR0CfEJPa+N96aAdN6ANoCEdAyQQhle4TbnV9lChoBkdAnkaJDqnm72gHTegDaAhHQMkEvRDCxeN1fZQoaAZHQJzGVVlwtJ5oB03oA2gIR0DJBTySRr8BdX2UKGgGR0CeX1sBQvYfaAdN6ANoCEdAyQbePkq+anV9lChoBkdAoBsWFev6j2gHTegDaAhHQMkHJ3c580F1fZQoaAZHQJ83nlPrOZ9oB03oA2gIR0DJB8Kh+OOsdX2UKGgGR0CfMLTa0x/NaAdN6ANoCEdAyQhA69TP0XV9lChoBkdAoBzVC7btZ2gHTegDaAhHQMkJ5LLyMDR1fZQoaAZHQJ5EulSCOFRoB03oA2gIR0DJCi3ysjmkdX2UKGgGR0CgJX1SOzY3aAdN6ANoCEdAyQrJVBlcyHV9lChoBkdAnw881fmcOWgHTegDaAhHQMkLQ25H3Dh1fZQoaAZHQJ5tED6nBLxoB03oA2gIR0DJDNqJ0nw5dX2UKGgGR0CeEPDWK/EgaAdN6ANoCEdAyQ0lEkSmInV9lChoBkdAnliJRKpT/GgHTegDaAhHQMkNwGSpzcR1fZQoaAZHQJ+zO/N7jT9oB03oA2gIR0DJDjz/wRXfdX2UKGgGR0Cf2EPSlWOqaAdN6ANoCEdAyQ/Ng/keZHV9lChoBkdAnfSMTFl05mgHTegDaAhHQMkQGVNHpbF1fZQoaAZHQJ8KmQSzw+doB03oA2gIR0DJELNrAP/adX2UKGgGR0CezXgjyFwlaAdN6ANoCEdAyREyGwiaAnV9lChoBkdAnyVBffGdZ2gHTegDaAhHQMkSy7fP5YZ1fZQoaAZHQJ/a5I9TxXpoB03oA2gIR0DJExgO4G2UdX2UKGgGR0CfpdACGN70aAdN6ANoCEdAyROzCgsbvXV9lChoBkdAnt7d34bjtGgHTegDaAhHQMkUL6Rp1zR1fZQoaAZHQJ+Q35ULlV9oB03oA2gIR0DJFcdT5wfhdX2UKGgGR0CfUhHZsbeeaAdN6ANoCEdAyRYVzeXRgXV9lChoBkdAnulsZP2wmmgHTegDaAhHQMkWsZDArQR1fZQoaAZHQJ75k9nscABoB03oA2gIR0DJFzC3qiXZdX2UKGgGR0CfGgNnGsFMaAdN6ANoCEdAyRja0D2alXV9lChoBkdAnlRJRTCLuWgHTegDaAhHQMkZJvHtF8Z1fZQoaAZHwDVXAi3XqaBoB0uTaAhHQMkZlp22Xsx1fZQoaAZHQJwaff8/D+BoB03oA2gIR0DJGcHL3bmEdX2UKGgGR0Cew+ckMTewaAdN6ANoCEdAyRo+W43FUHV9lChoBkdAnW3zxwyZa2gHTegDaAhHQMkb2IcaOxV1fZQoaAZHQJ/BsO6NEPVoB03oA2gIR0DJHJiFqSHNdX2UKGgGR0Cf+qLzPKMeaAdN6ANoCEdAyRzEOAAhjnV9lChoBkdAoCt25paibmgHTegDaAhHQMkdQwV0tAd1fZQoaAZHQJ++V3zMA3loB03oA2gIR0DJHuSPOpsHdX2UKGgGR0CgAyVvES/TaAdN6ANoCEdAyR+iKZ2IPHV9lChoBkdAoFR1DlYEGWgHTegDaAhHQMkf4z+NtIl1fZQoaAZHQJ9b39m6GxloB03oA2gIR0DJIKQBV+7UdX2UKGgGR0CenwtKZlWfaAdN6ANoCEdAySLfc45tFnV9lChoBkdAn9NWMbWEsmgHTegDaAhHQMkjneLm6oV1fZQoaAZHQJ8XuQ9zOopoB03oA2gIR0DJI8fMINVjdX2UKGgGR0Cfvr++dsi0aAdN6ANoCEdAySRDUBnzx3V9lChoBkdAn/QBVMmF8GgHTegDaAhHQMkl8Uz9CNV1fZQoaAZHQJ6/qpNsWO9oB03oA2gIR0DJJq+F10T2dX2UKGgGR0CfIuIXj2i+aAdN6ANoCEdAySbdLW7OFHV9lChoBkdAn18JlOGj9GgHTegDaAhHQMknYyfcvdx1fZQoaAZHQJ8rKGetjkNoB03oA2gIR0DJKP+vwEyMdX2UKGgGR0CgB42ECeVcaAdN6ANoCEdAySm9maH9FXV9lChoBkdAnptCr5qM32gHTegDaAhHQMkp6OlXRw91fZQoaAZHQKA7fWT5ftxoB03oA2gIR0DJKmcl7dBTdX2UKGgGR0CgH9N7rs0IaAdN6ANoCEdAySwBqB3A23V9lChoBkdAn2o4raufVmgHTegDaAhHQMksvpFkQPJ1fZQoaAZHQJ7Cq3jMmnhoB03oA2gIR0DJLOllf7aadX2UKGgGR0CehhUz9CNTaAdN6ANoCEdAyS1osBhhIHV9lChoBkfAM7/FzdUKiWgHS1xoCEdAyS2vwzch1XV9lChoBkdAn4ETABT4tmgHTegDaAhHQMkvBmGM4tJ1fZQoaAZHQJwLb/6wdKdoB03oA2gIR0DJL8p80DU3dX2UKGgGR0Ces6y8BdUsaAdN6ANoCEdAyS/2t9QXRHV9lChoBkdAnyHIAn2IwmgHTegDaAhHQMkwwFuNxVB1fZQoaAZHQJyHdHnU2DRoB03oA2gIR0DJMiDuc+aCdX2UKGgGR0Ce3a3WnTAnaAdN6ANoCEdAyTLjULlV+HV9lChoBkdAnfNupKjBVWgHTegDaAhHQMkzDOYplSV1fZQoaAZHQJ1bp4fOlftoB03oA2gIR0DJM9HoTwlTdX2UKGgGR0CdpOdkrf+CaAdN6ANoCEdAyTUpbnHNo3V9lChoBkdAQFRTQ3PzF2gHS19oCEdAyTV1ie/Ya3V9lChoBkdAnvuUnssxwmgHTegDaAhHQMk18C6xxDN1fZQoaAZHQJ3+mlHjIaNoB03oA2gIR0DJNh2mk30gdX2UKGgGR0Ce2x114gRsaAdN6ANoCEdAyTbyVzIV/XV9lChoBkdAn99A2/BWP2gHTegDaAhHQMk4l8T8HfN1fZQoaAZHQJ9ptzmwJPZoB03oA2gIR0DJORAaLn9vdX2UKGgGR0CeR5qfOD8MaAdN6ANoCEdAyTk6RzRx+HV9lChoBkdAnp8VtfoicGgHTegDaAhHQMk6AT5ftyB1fZQoaAZHQJzxP8uSOipoB03oA2gIR0DJO6A6IWP+dX2UKGgGR0Cd6hTQE6kqaAdN6ANoCEdAyTwXdLxqf3V9lChoBkdAnPa3Wvr4WWgHTegDaAhHQMk8QTqKP4p1fZQoaAZHQJ1KHLr5ZbJoB03oA2gIR0DJPRDziCJ5dX2UKGgGR0CenQ6ErXlKaAdN6ANoCEdAyT6zF6RhdHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aed39349f256878a289609b916eddc62ca3d4efa28ba2a3704a70a1f5c24dfe6
3
+ size 1012227
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1998.40929352612, "std_reward": 41.75354814125246, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T17:32:21.468618"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01cd46dde365c195f031b3359d53bc25ead33bd63036231a019ac54d65146f7e
3
+ size 2136