Try to avoid fake op registration issues
Browse files- ext-torch/moe/__init__.py +0 -47
- ext-torch/moe/fused_marlin_moe.py +46 -6
- ext-torch/moe/fused_moe.py +2 -2
ext-torch/moe/__init__.py
CHANGED
|
@@ -1,19 +1,5 @@
|
|
| 1 |
-
from typing import TYPE_CHECKING
|
| 2 |
-
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
# neuron has torch version that doesn't even have impl_abstract
|
| 6 |
-
if TYPE_CHECKING:
|
| 7 |
-
|
| 8 |
-
def register_fake(fn):
|
| 9 |
-
return lambda name: fn
|
| 10 |
-
|
| 11 |
-
else:
|
| 12 |
-
try:
|
| 13 |
-
from torch.library import register_fake
|
| 14 |
-
except ImportError:
|
| 15 |
-
from torch.library import impl_abstract as register_fake
|
| 16 |
-
|
| 17 |
from ._ops import add_op_namespace_prefix, ops
|
| 18 |
from .fused_marlin_moe import fused_marlin_moe
|
| 19 |
from .fused_moe import fused_moe, fused_topk, grouped_topk
|
|
@@ -91,39 +77,6 @@ def topk_softmax(
|
|
| 91 |
ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
|
| 92 |
|
| 93 |
|
| 94 |
-
if hasattr(ops, "marlin_gemm_moe"):
|
| 95 |
-
|
| 96 |
-
@register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
|
| 97 |
-
def marlin_gemm_moe_fake(
|
| 98 |
-
a: torch.Tensor,
|
| 99 |
-
b_q_weights: torch.Tensor,
|
| 100 |
-
sorted_ids: torch.Tensor,
|
| 101 |
-
topk_weights: torch.Tensor,
|
| 102 |
-
topk_ids: torch.Tensor,
|
| 103 |
-
b_scales: torch.Tensor,
|
| 104 |
-
b_zero_points: torch.Tensor,
|
| 105 |
-
g_idx: torch.Tensor,
|
| 106 |
-
perm: torch.Tensor,
|
| 107 |
-
workspace: torch.Tensor,
|
| 108 |
-
b_q_type: ScalarType,
|
| 109 |
-
size_m: torch.SymInt,
|
| 110 |
-
size_n: torch.SymInt,
|
| 111 |
-
size_k: torch.SymInt,
|
| 112 |
-
is_k_full: bool,
|
| 113 |
-
num_experts: int,
|
| 114 |
-
topk: int,
|
| 115 |
-
moe_block_size: int,
|
| 116 |
-
replicate_input: bool,
|
| 117 |
-
apply_weights: bool,
|
| 118 |
-
) -> torch.Tensor:
|
| 119 |
-
return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
| 123 |
-
ops.silu_and_mul(out, x)
|
| 124 |
-
return out
|
| 125 |
-
|
| 126 |
-
|
| 127 |
__all__ = [
|
| 128 |
"gptq_marlin_moe_repack",
|
| 129 |
"awq_marlin_moe_repack",
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from ._ops import add_op_namespace_prefix, ops
|
| 4 |
from .fused_marlin_moe import fused_marlin_moe
|
| 5 |
from .fused_moe import fused_moe, fused_topk, grouped_topk
|
|
|
|
| 77 |
ops.topk_softmax(topk_weights, topk_ids, token_expert_indicies, gating_output)
|
| 78 |
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
__all__ = [
|
| 81 |
"gptq_marlin_moe_repack",
|
| 82 |
"awq_marlin_moe_repack",
|
ext-torch/moe/fused_marlin_moe.py
CHANGED
|
@@ -1,13 +1,25 @@
|
|
| 1 |
"""Fused MoE utilities for GPTQ."""
|
| 2 |
|
| 3 |
import functools
|
| 4 |
-
from typing import Any, Dict, Optional
|
| 5 |
|
| 6 |
import torch
|
| 7 |
|
|
|
|
| 8 |
from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
|
| 9 |
-
from .scalar_type import scalar_types
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def get_scalar_type(num_bits: int, has_zp: bool):
|
|
@@ -116,7 +128,7 @@ def single_marlin_moe(
|
|
| 116 |
|
| 117 |
scalar_type = get_scalar_type(num_bits, has_zero_point)
|
| 118 |
|
| 119 |
-
intermediate_cache = ops.
|
| 120 |
hidden_states,
|
| 121 |
w,
|
| 122 |
sorted_token_ids,
|
|
@@ -287,7 +299,7 @@ def fused_marlin_moe(
|
|
| 287 |
dtype=hidden_states.dtype,
|
| 288 |
)
|
| 289 |
|
| 290 |
-
intermediate_cache1 = ops.
|
| 291 |
hidden_states,
|
| 292 |
w1,
|
| 293 |
sorted_token_ids,
|
|
@@ -312,7 +324,7 @@ def fused_marlin_moe(
|
|
| 312 |
|
| 313 |
ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
|
| 314 |
|
| 315 |
-
intermediate_cache3 = ops.
|
| 316 |
intermediate_cache2,
|
| 317 |
w2,
|
| 318 |
sorted_token_ids,
|
|
@@ -336,3 +348,31 @@ def fused_marlin_moe(
|
|
| 336 |
)
|
| 337 |
|
| 338 |
return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""Fused MoE utilities for GPTQ."""
|
| 2 |
|
| 3 |
import functools
|
| 4 |
+
from typing import TYPE_CHECKING, Any, Dict, Optional
|
| 5 |
|
| 6 |
import torch
|
| 7 |
|
| 8 |
+
from ._ops import add_op_namespace_prefix, ops
|
| 9 |
from .fused_moe import fused_topk, moe_align_block_size, try_get_optimal_moe_config
|
| 10 |
+
from .scalar_type import ScalarType, scalar_types
|
| 11 |
+
|
| 12 |
+
# neuron has torch version that doesn't even have impl_abstract
|
| 13 |
+
if TYPE_CHECKING:
|
| 14 |
+
|
| 15 |
+
def register_fake(fn):
|
| 16 |
+
return lambda name: fn
|
| 17 |
+
|
| 18 |
+
else:
|
| 19 |
+
try:
|
| 20 |
+
from torch.library import register_fake
|
| 21 |
+
except ImportError:
|
| 22 |
+
from torch.library import impl_abstract as register_fake
|
| 23 |
|
| 24 |
|
| 25 |
def get_scalar_type(num_bits: int, has_zp: bool):
|
|
|
|
| 128 |
|
| 129 |
scalar_type = get_scalar_type(num_bits, has_zero_point)
|
| 130 |
|
| 131 |
+
intermediate_cache = ops.marlin_gemm_moe(
|
| 132 |
hidden_states,
|
| 133 |
w,
|
| 134 |
sorted_token_ids,
|
|
|
|
| 299 |
dtype=hidden_states.dtype,
|
| 300 |
)
|
| 301 |
|
| 302 |
+
intermediate_cache1 = ops.marlin_gemm_moe(
|
| 303 |
hidden_states,
|
| 304 |
w1,
|
| 305 |
sorted_token_ids,
|
|
|
|
| 324 |
|
| 325 |
ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N))
|
| 326 |
|
| 327 |
+
intermediate_cache3 = ops.marlin_gemm_moe(
|
| 328 |
intermediate_cache2,
|
| 329 |
w2,
|
| 330 |
sorted_token_ids,
|
|
|
|
| 348 |
)
|
| 349 |
|
| 350 |
return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
if hasattr(ops, "marlin_gemm_moe"):
|
| 354 |
+
|
| 355 |
+
@register_fake(add_op_namespace_prefix("marlin_gemm_moe"))
|
| 356 |
+
def marlin_gemm_moe_fake(
|
| 357 |
+
a: torch.Tensor,
|
| 358 |
+
b_q_weights: torch.Tensor,
|
| 359 |
+
sorted_ids: torch.Tensor,
|
| 360 |
+
topk_weights: torch.Tensor,
|
| 361 |
+
topk_ids: torch.Tensor,
|
| 362 |
+
b_scales: torch.Tensor,
|
| 363 |
+
b_zero_points: torch.Tensor,
|
| 364 |
+
g_idx: torch.Tensor,
|
| 365 |
+
perm: torch.Tensor,
|
| 366 |
+
workspace: torch.Tensor,
|
| 367 |
+
b_q_type: ScalarType,
|
| 368 |
+
size_m: torch.SymInt,
|
| 369 |
+
size_n: torch.SymInt,
|
| 370 |
+
size_k: torch.SymInt,
|
| 371 |
+
is_k_full: bool,
|
| 372 |
+
num_experts: int,
|
| 373 |
+
topk: int,
|
| 374 |
+
moe_block_size: int,
|
| 375 |
+
replicate_input: bool,
|
| 376 |
+
apply_weights: bool,
|
| 377 |
+
) -> torch.Tensor:
|
| 378 |
+
return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
|
ext-torch/moe/fused_moe.py
CHANGED
|
@@ -9,9 +9,9 @@ import torch
|
|
| 9 |
import triton
|
| 10 |
import triton.language as tl
|
| 11 |
|
| 12 |
-
from .
|
| 13 |
from .fp8 import scaled_fp8_quant
|
| 14 |
-
|
| 15 |
|
| 16 |
VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
|
| 17 |
|
|
|
|
| 9 |
import triton
|
| 10 |
import triton.language as tl
|
| 11 |
|
| 12 |
+
from ._ops import ops
|
| 13 |
from .fp8 import scaled_fp8_quant
|
| 14 |
+
from .platforms import current_platform
|
| 15 |
|
| 16 |
VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))
|
| 17 |
|