nm-research commited on
Commit
d7f242c
·
verified ·
1 Parent(s): a807cbb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md CHANGED
@@ -257,3 +257,143 @@ evalplus.evaluate \
257
  </tbody>
258
  </table>
259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257
  </tbody>
258
  </table>
259
 
260
+
261
+
262
+ ## Inference Performance
263
+
264
+
265
+ This model achieves up to 1.9x speedup in single-stream deployment, depending on hardware and use-case scenario.
266
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
267
+
268
+ <details>
269
+ <summary>Benchmarking Command</summary>
270
+
271
+ ```
272
+ guidellm --model neuralmagic/granite-3.1-2b-base-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
273
+ ```
274
+
275
+ </details>
276
+
277
+ ### Single-stream performance (measured with vLLM version 0.6.6.post1)
278
+ <table>
279
+ <tr>
280
+ <td></td>
281
+ <td></td>
282
+ <td></td>
283
+ <th style="text-align: center;" colspan="7" >Latency (s)</th>
284
+ </tr>
285
+ <tr>
286
+ <th>GPU class</th>
287
+ <th>Model</th>
288
+ <th>Speedup</th>
289
+ <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
290
+ <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
291
+ <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
292
+ <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
293
+ <th>baseion Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
294
+ <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
295
+ <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
296
+ </tr>
297
+ <tr>
298
+ <td style="vertical-align: middle;" rowspan="3" >A5000</td>
299
+ <td>granite-3.1-2b-base</td>
300
+ <td></td>
301
+ <td>10.9</td>
302
+ <td>1.4</td>
303
+ <td>11.0</td>
304
+ <td>1.5</td>
305
+ <td>1.4</td>
306
+ <td>2.8</td>
307
+ <td>6.1</td>
308
+ </tr>
309
+ <tr>
310
+ <td>granite-3.1-2b-base-quantized.w8a8</td>
311
+ <td>1.37</td>
312
+ <td>7.9</td>
313
+ <td>1.0</td>
314
+ <td>8.0</td>
315
+ <td>1.1</td>
316
+ <td>1.0</td>
317
+ <td>2.0</td>
318
+ <td>4.7</td>
319
+ </tr>
320
+ <tr>
321
+ <td>granite-3.1-2b-base-quantized.w4a16<br>(this model)</td>
322
+ <td>1.94</td>
323
+ <td>5.4</td>
324
+ <td>0.7</td>
325
+ <td>5.5</td>
326
+ <td>0.8</td>
327
+ <td>0.7</td>
328
+ <td>1.4</td>
329
+ <td>3.4</td>
330
+ </tr>
331
+ <tr>
332
+ <td style="vertical-align: middle;" rowspan="3" >A6000</td>
333
+ <td>granite-3.1-2b-base</td>
334
+ <td></td>
335
+ <td>9.8</td>
336
+ <td>1.3</td>
337
+ <td>10.0</td>
338
+ <td>1.3</td>
339
+ <td>1.3</td>
340
+ <td>2.6</td>
341
+ <td>5.4</td>
342
+ </tr>
343
+ <tr>
344
+ <td>granite-3.1-2b-base-quantized.w8a8</td>
345
+ <td>1.31</td>
346
+ <td>7.8</td>
347
+ <td>1.0</td>
348
+ <td>7.6</td>
349
+ <td>1.0</td>
350
+ <td>0.9</td>
351
+ <td>1.9</td>
352
+ <td>4.5</td>
353
+ </tr>
354
+ <tr>
355
+ <td>granite-3.1-2b-base-quantized.w4a16<br>(this model)</td>
356
+ <td>1.87</td>
357
+ <td>5.1</td>
358
+ <td>0.7</td>
359
+ <td>5.2</td>
360
+ <td>0.7</td>
361
+ <td>0.7</td>
362
+ <td>1.3</td>
363
+ <td>3.1</td>
364
+ </tr>
365
+ <tr>
366
+ <td style="vertical-align: middle;" rowspan="3" >L40</td>
367
+ <td>granite-3.1-2b-base</td>
368
+ <td></td>
369
+ <td>9.3</td>
370
+ <td>1.2</td>
371
+ <td>9.4</td>
372
+ <td>1.2</td>
373
+ <td>1.2</td>
374
+ <td>2.3</td>
375
+ <td>5.0</td>
376
+ </tr>
377
+ <tr>
378
+ <td>granite-3.1-2b-base-FP8-dynamic</td>
379
+ <td>1.26</td>
380
+ <td>7.3</td>
381
+ <td>0.9</td>
382
+ <td>7.4</td>
383
+ <td>1.0</td>
384
+ <td>0.9</td>
385
+ <td>1.8</td>
386
+ <td>4.1</td>
387
+ </tr>
388
+ <tr>
389
+ <td>granite-3.1-2b-base-quantized.w4a16<br>(this model)</td>
390
+ <td>1.88</td>
391
+ <td>4.8</td>
392
+ <td>0.6</td>
393
+ <td>4.9</td>
394
+ <td>0.6</td>
395
+ <td>0.6</td>
396
+ <td>1.2</td>
397
+ <td>2.8</td>
398
+ </tr>
399
+ </table>