Update README.md
Browse files
README.md
CHANGED
@@ -257,3 +257,143 @@ evalplus.evaluate \
|
|
257 |
</tbody>
|
258 |
</table>
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
</tbody>
|
258 |
</table>
|
259 |
|
260 |
+
|
261 |
+
|
262 |
+
## Inference Performance
|
263 |
+
|
264 |
+
|
265 |
+
This model achieves up to 1.9x speedup in single-stream deployment, depending on hardware and use-case scenario.
|
266 |
+
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
|
267 |
+
|
268 |
+
<details>
|
269 |
+
<summary>Benchmarking Command</summary>
|
270 |
+
|
271 |
+
```
|
272 |
+
guidellm --model neuralmagic/granite-3.1-2b-base-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
|
273 |
+
```
|
274 |
+
|
275 |
+
</details>
|
276 |
+
|
277 |
+
### Single-stream performance (measured with vLLM version 0.6.6.post1)
|
278 |
+
<table>
|
279 |
+
<tr>
|
280 |
+
<td></td>
|
281 |
+
<td></td>
|
282 |
+
<td></td>
|
283 |
+
<th style="text-align: center;" colspan="7" >Latency (s)</th>
|
284 |
+
</tr>
|
285 |
+
<tr>
|
286 |
+
<th>GPU class</th>
|
287 |
+
<th>Model</th>
|
288 |
+
<th>Speedup</th>
|
289 |
+
<th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
|
290 |
+
<th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
|
291 |
+
<th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
|
292 |
+
<th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
|
293 |
+
<th>baseion Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
|
294 |
+
<th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
|
295 |
+
<th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
|
296 |
+
</tr>
|
297 |
+
<tr>
|
298 |
+
<td style="vertical-align: middle;" rowspan="3" >A5000</td>
|
299 |
+
<td>granite-3.1-2b-base</td>
|
300 |
+
<td></td>
|
301 |
+
<td>10.9</td>
|
302 |
+
<td>1.4</td>
|
303 |
+
<td>11.0</td>
|
304 |
+
<td>1.5</td>
|
305 |
+
<td>1.4</td>
|
306 |
+
<td>2.8</td>
|
307 |
+
<td>6.1</td>
|
308 |
+
</tr>
|
309 |
+
<tr>
|
310 |
+
<td>granite-3.1-2b-base-quantized.w8a8</td>
|
311 |
+
<td>1.37</td>
|
312 |
+
<td>7.9</td>
|
313 |
+
<td>1.0</td>
|
314 |
+
<td>8.0</td>
|
315 |
+
<td>1.1</td>
|
316 |
+
<td>1.0</td>
|
317 |
+
<td>2.0</td>
|
318 |
+
<td>4.7</td>
|
319 |
+
</tr>
|
320 |
+
<tr>
|
321 |
+
<td>granite-3.1-2b-base-quantized.w4a16<br>(this model)</td>
|
322 |
+
<td>1.94</td>
|
323 |
+
<td>5.4</td>
|
324 |
+
<td>0.7</td>
|
325 |
+
<td>5.5</td>
|
326 |
+
<td>0.8</td>
|
327 |
+
<td>0.7</td>
|
328 |
+
<td>1.4</td>
|
329 |
+
<td>3.4</td>
|
330 |
+
</tr>
|
331 |
+
<tr>
|
332 |
+
<td style="vertical-align: middle;" rowspan="3" >A6000</td>
|
333 |
+
<td>granite-3.1-2b-base</td>
|
334 |
+
<td></td>
|
335 |
+
<td>9.8</td>
|
336 |
+
<td>1.3</td>
|
337 |
+
<td>10.0</td>
|
338 |
+
<td>1.3</td>
|
339 |
+
<td>1.3</td>
|
340 |
+
<td>2.6</td>
|
341 |
+
<td>5.4</td>
|
342 |
+
</tr>
|
343 |
+
<tr>
|
344 |
+
<td>granite-3.1-2b-base-quantized.w8a8</td>
|
345 |
+
<td>1.31</td>
|
346 |
+
<td>7.8</td>
|
347 |
+
<td>1.0</td>
|
348 |
+
<td>7.6</td>
|
349 |
+
<td>1.0</td>
|
350 |
+
<td>0.9</td>
|
351 |
+
<td>1.9</td>
|
352 |
+
<td>4.5</td>
|
353 |
+
</tr>
|
354 |
+
<tr>
|
355 |
+
<td>granite-3.1-2b-base-quantized.w4a16<br>(this model)</td>
|
356 |
+
<td>1.87</td>
|
357 |
+
<td>5.1</td>
|
358 |
+
<td>0.7</td>
|
359 |
+
<td>5.2</td>
|
360 |
+
<td>0.7</td>
|
361 |
+
<td>0.7</td>
|
362 |
+
<td>1.3</td>
|
363 |
+
<td>3.1</td>
|
364 |
+
</tr>
|
365 |
+
<tr>
|
366 |
+
<td style="vertical-align: middle;" rowspan="3" >L40</td>
|
367 |
+
<td>granite-3.1-2b-base</td>
|
368 |
+
<td></td>
|
369 |
+
<td>9.3</td>
|
370 |
+
<td>1.2</td>
|
371 |
+
<td>9.4</td>
|
372 |
+
<td>1.2</td>
|
373 |
+
<td>1.2</td>
|
374 |
+
<td>2.3</td>
|
375 |
+
<td>5.0</td>
|
376 |
+
</tr>
|
377 |
+
<tr>
|
378 |
+
<td>granite-3.1-2b-base-FP8-dynamic</td>
|
379 |
+
<td>1.26</td>
|
380 |
+
<td>7.3</td>
|
381 |
+
<td>0.9</td>
|
382 |
+
<td>7.4</td>
|
383 |
+
<td>1.0</td>
|
384 |
+
<td>0.9</td>
|
385 |
+
<td>1.8</td>
|
386 |
+
<td>4.1</td>
|
387 |
+
</tr>
|
388 |
+
<tr>
|
389 |
+
<td>granite-3.1-2b-base-quantized.w4a16<br>(this model)</td>
|
390 |
+
<td>1.88</td>
|
391 |
+
<td>4.8</td>
|
392 |
+
<td>0.6</td>
|
393 |
+
<td>4.9</td>
|
394 |
+
<td>0.6</td>
|
395 |
+
<td>0.6</td>
|
396 |
+
<td>1.2</td>
|
397 |
+
<td>2.8</td>
|
398 |
+
</tr>
|
399 |
+
</table>
|