Update README.md
Browse files
README.md
CHANGED
@@ -131,7 +131,7 @@ model.save_pretrained("Meta-Llama-3.1-70B-Instruct-quantized.w8a8")
|
|
131 |
|
132 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
133 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
134 |
-
This version of the lm-evaluation-harness includes versions of ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
135 |
|
136 |
### Accuracy
|
137 |
|
@@ -142,7 +142,7 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
142 |
</td>
|
143 |
<td><strong>Meta-Llama-3.1-70B-Instruct </strong>
|
144 |
</td>
|
145 |
-
<td><strong>Meta-Llama-3.1-70B-Instruct-quantized.
|
146 |
</td>
|
147 |
<td><strong>Recovery</strong>
|
148 |
</td>
|
@@ -150,9 +150,19 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
150 |
<tr>
|
151 |
<td>MMLU (5-shot)
|
152 |
</td>
|
153 |
-
<td>
|
154 |
</td>
|
155 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
</td>
|
157 |
<td>99.6%
|
158 |
</td>
|
@@ -160,11 +170,11 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
160 |
<tr>
|
161 |
<td>ARC Challenge (0-shot)
|
162 |
</td>
|
163 |
-
<td>
|
164 |
</td>
|
165 |
-
<td>
|
166 |
</td>
|
167 |
-
<td>
|
168 |
</td>
|
169 |
</tr>
|
170 |
<tr>
|
@@ -210,11 +220,11 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
210 |
<tr>
|
211 |
<td><strong>Average</strong>
|
212 |
</td>
|
213 |
-
<td><strong>83.
|
214 |
</td>
|
215 |
-
<td><strong>83.
|
216 |
</td>
|
217 |
-
<td><strong>100.
|
218 |
</td>
|
219 |
</tr>
|
220 |
</table>
|
@@ -227,17 +237,30 @@ The results were obtained using the following commands:
|
|
227 |
```
|
228 |
lm_eval \
|
229 |
--model vllm \
|
230 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=
|
231 |
-
--tasks
|
|
|
|
|
232 |
--num_fewshot 5 \
|
233 |
--batch_size auto
|
234 |
```
|
235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
#### ARC-Challenge
|
237 |
```
|
238 |
lm_eval \
|
239 |
--model vllm \
|
240 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=
|
241 |
--tasks arc_challenge_llama_3.1_instruct \
|
242 |
--apply_chat_template \
|
243 |
--num_fewshot 0 \
|
@@ -248,7 +271,7 @@ lm_eval \
|
|
248 |
```
|
249 |
lm_eval \
|
250 |
--model vllm \
|
251 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=
|
252 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
253 |
--fewshot_as_multiturn \
|
254 |
--apply_chat_template \
|
@@ -260,7 +283,7 @@ lm_eval \
|
|
260 |
```
|
261 |
lm_eval \
|
262 |
--model vllm \
|
263 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=
|
264 |
--tasks hellaswag \
|
265 |
--num_fewshot 10 \
|
266 |
--batch_size auto
|
@@ -270,7 +293,7 @@ lm_eval \
|
|
270 |
```
|
271 |
lm_eval \
|
272 |
--model vllm \
|
273 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=
|
274 |
--tasks winogrande \
|
275 |
--num_fewshot 5 \
|
276 |
--batch_size auto
|
@@ -280,7 +303,7 @@ lm_eval \
|
|
280 |
```
|
281 |
lm_eval \
|
282 |
--model vllm \
|
283 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=
|
284 |
--tasks truthfulqa \
|
285 |
--num_fewshot 0 \
|
286 |
--batch_size auto
|
|
|
131 |
|
132 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
133 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
134 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
135 |
|
136 |
### Accuracy
|
137 |
|
|
|
142 |
</td>
|
143 |
<td><strong>Meta-Llama-3.1-70B-Instruct </strong>
|
144 |
</td>
|
145 |
+
<td><strong>Meta-Llama-3.1-70B-Instruct-quantized.w8a16 (this model)</strong>
|
146 |
</td>
|
147 |
<td><strong>Recovery</strong>
|
148 |
</td>
|
|
|
150 |
<tr>
|
151 |
<td>MMLU (5-shot)
|
152 |
</td>
|
153 |
+
<td>83.88
|
154 |
</td>
|
155 |
+
<td>83.65
|
156 |
+
</td>
|
157 |
+
<td>99.7%
|
158 |
+
</td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td>MMLU (CoT, 0-shot)
|
162 |
+
</td>
|
163 |
+
<td>85.74
|
164 |
+
</td>
|
165 |
+
<td>85.41
|
166 |
</td>
|
167 |
<td>99.6%
|
168 |
</td>
|
|
|
170 |
<tr>
|
171 |
<td>ARC Challenge (0-shot)
|
172 |
</td>
|
173 |
+
<td>93.26
|
174 |
</td>
|
175 |
+
<td>93.26
|
176 |
</td>
|
177 |
+
<td>100.0%
|
178 |
</td>
|
179 |
</tr>
|
180 |
<tr>
|
|
|
220 |
<tr>
|
221 |
<td><strong>Average</strong>
|
222 |
</td>
|
223 |
+
<td><strong>83.89</strong>
|
224 |
</td>
|
225 |
+
<td><strong>83.96</strong>
|
226 |
</td>
|
227 |
+
<td><strong>100.2%</strong>
|
228 |
</td>
|
229 |
</tr>
|
230 |
</table>
|
|
|
237 |
```
|
238 |
lm_eval \
|
239 |
--model vllm \
|
240 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
241 |
+
--tasks mmlu_llama_3.1_instruct \
|
242 |
+
--fewshot_as_multiturn \
|
243 |
+
--apply_chat_template \
|
244 |
--num_fewshot 5 \
|
245 |
--batch_size auto
|
246 |
```
|
247 |
|
248 |
+
#### MMLU-CoT
|
249 |
+
```
|
250 |
+
lm_eval \
|
251 |
+
--model vllm \
|
252 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
253 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
254 |
+
--apply_chat_template \
|
255 |
+
--num_fewshot 0 \
|
256 |
+
--batch_size auto
|
257 |
+
```
|
258 |
+
|
259 |
#### ARC-Challenge
|
260 |
```
|
261 |
lm_eval \
|
262 |
--model vllm \
|
263 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
264 |
--tasks arc_challenge_llama_3.1_instruct \
|
265 |
--apply_chat_template \
|
266 |
--num_fewshot 0 \
|
|
|
271 |
```
|
272 |
lm_eval \
|
273 |
--model vllm \
|
274 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
275 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
276 |
--fewshot_as_multiturn \
|
277 |
--apply_chat_template \
|
|
|
283 |
```
|
284 |
lm_eval \
|
285 |
--model vllm \
|
286 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
287 |
--tasks hellaswag \
|
288 |
--num_fewshot 10 \
|
289 |
--batch_size auto
|
|
|
293 |
```
|
294 |
lm_eval \
|
295 |
--model vllm \
|
296 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
297 |
--tasks winogrande \
|
298 |
--num_fewshot 5 \
|
299 |
--batch_size auto
|
|
|
303 |
```
|
304 |
lm_eval \
|
305 |
--model vllm \
|
306 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
307 |
--tasks truthfulqa \
|
308 |
--num_fewshot 0 \
|
309 |
--batch_size auto
|