Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: neuralmagic/Llama-2-7b-pruned70-retrained-instruct
|
| 3 |
+
inference: false
|
| 4 |
+
model_type: llama
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
datasets:
|
| 7 |
+
- garage-bAInd/Open-Platypus
|
| 8 |
+
- Open-Orca/OpenOrca
|
| 9 |
+
- cognitivecomputations/dolphin
|
| 10 |
+
tags:
|
| 11 |
+
- sparse
|
| 12 |
+
- instruct
|
| 13 |
+
- deepsparse
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# Llama-2-7b-pruned70-retrained-instruct-quant-ds
|
| 17 |
+
|
| 18 |
+
This repo contains a [70% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) finetuned for instruction-following tasks using a blend of the Platypus + Open Orca + Dolphin datasets.
|
| 19 |
+
It was then quantized to 8-bit weights + activations and exported to deploy with [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
|
| 20 |
+
|
| 21 |
+
**Authors**: Neural Magic, Cerebras
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
|
| 25 |
+
Below we share some code snippets on how to get quickly started with running the model.
|
| 26 |
+
|
| 27 |
+
### Sparse Transfer
|
| 28 |
+
|
| 29 |
+
By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
|
| 30 |
+
|
| 31 |
+
### Running the model
|
| 32 |
+
|
| 33 |
+
For accelerated inference with sparsity on CPUs, deploy with [deepsparse](https://github.com/neuralmagic/deepsparse).
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
# pip install deepsparse[llm]
|
| 37 |
+
from deepsparse import TextGeneration
|
| 38 |
+
|
| 39 |
+
model = TextGeneration(model_path="hf:neuralmagic/Llama-2-7b-pruned70-retrained-instruct-quant-ds")
|
| 40 |
+
|
| 41 |
+
input_text = "Write me a poem about Machine Learning."
|
| 42 |
+
outputs = model(formatted_prompt, max_new_tokens=100)
|
| 43 |
+
print(outputs.generations[0].text)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Evaluation Benchmark Results
|
| 47 |
+
|
| 48 |
+
Model evaluation metrics and results.
|
| 49 |
+
|
| 50 |
+
| Benchmark | Metric | Llama-2-7b-instruct | Llama-2-7b-pruned70-retrained-instruct-quant-ds |
|
| 51 |
+
|------------------------------------------------|---------------|-------------|-------------------------------|
|
| 52 |
+
| [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | xxxx | xxxx |
|
| 53 |
+
| [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | xxxx | xxxx |
|
| 54 |
+
| [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | xxxx | xxxx |
|
| 55 |
+
| [ARC-c](https://arxiv.org/abs/1911.01547) | | xxxx | xxxx |
|
| 56 |
+
| [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | xxxx | xxxx |
|
| 57 |
+
| [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | xxxx | xxxx |
|
| 58 |
+
| [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | xxxx | xxxx |
|
| 59 |
+
|
| 60 |
+
## Model Training Details
|
| 61 |
+
|
| 62 |
+
Coming soon.
|
| 63 |
+
|
| 64 |
+
## Help
|
| 65 |
+
|
| 66 |
+
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
|