Update README.md
Browse files
README.md
CHANGED
@@ -270,3 +270,240 @@ lm_eval \
|
|
270 |
</tr>
|
271 |
</tbody>
|
272 |
</table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
</tr>
|
271 |
</tbody>
|
272 |
</table>
|
273 |
+
|
274 |
+
|
275 |
+
## Inference Performance
|
276 |
+
|
277 |
+
|
278 |
+
This model achieves up to 1.4x speedup in single-stream deployment and up to 1.8x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
|
279 |
+
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
|
280 |
+
|
281 |
+
<details>
|
282 |
+
<summary>Benchmarking Command</summary>
|
283 |
+
|
284 |
+
```
|
285 |
+
guidellm --model neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
|
286 |
+
```
|
287 |
+
</details>
|
288 |
+
|
289 |
+
### Single-stream performance (measured with vLLM version 0.7.2)
|
290 |
+
<table>
|
291 |
+
<thead>
|
292 |
+
<tr>
|
293 |
+
<th></th>
|
294 |
+
<th></th>
|
295 |
+
<th></th>
|
296 |
+
<th></th>
|
297 |
+
<th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
|
298 |
+
<th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
|
299 |
+
<th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
|
300 |
+
<th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
|
301 |
+
<th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
|
302 |
+
<th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
|
303 |
+
<th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
|
304 |
+
<th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
|
305 |
+
</tr>
|
306 |
+
<tr>
|
307 |
+
<th>GPU class</th>
|
308 |
+
<th>Number of GPUs</th>
|
309 |
+
<th>Model</th>
|
310 |
+
<th>Average cost reduction</th>
|
311 |
+
<th>Latency (s)</th>
|
312 |
+
<th>QPD</th>
|
313 |
+
<th>Latency (s)</th>
|
314 |
+
<th>QPD</th>
|
315 |
+
<th>Latency (s)</th>
|
316 |
+
<th>QPD</th>
|
317 |
+
<th>Latency (s)</th>
|
318 |
+
<th>QPD</th>
|
319 |
+
<th>Latency (s)</th>
|
320 |
+
<th>QPD</th>
|
321 |
+
<th>Latency (s)</th>
|
322 |
+
<th>QPD</th>
|
323 |
+
<th>Latency (s)</th>
|
324 |
+
<th>QPD</th>
|
325 |
+
<th>Latency (s)</th>
|
326 |
+
<th>QPD</th>
|
327 |
+
</tr>
|
328 |
+
</thead>
|
329 |
+
<tbody style="text-align: center" >
|
330 |
+
<tr>
|
331 |
+
<th rowspan="3" valign="top">H100</th>
|
332 |
+
<td>2</td>
|
333 |
+
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
|
334 |
+
<td>---</td>
|
335 |
+
<td>3.8</td>
|
336 |
+
<td>149</td>
|
337 |
+
<td>7.6</td>
|
338 |
+
<td>74</td>
|
339 |
+
<td>3.9</td>
|
340 |
+
<td>146</td>
|
341 |
+
<td>3.9</td>
|
342 |
+
<td>144</td>
|
343 |
+
<td>30.0</td>
|
344 |
+
<td>19</td>
|
345 |
+
<td>30.4</td>
|
346 |
+
<td>19</td>
|
347 |
+
<td>16.1</td>
|
348 |
+
<td>35</td>
|
349 |
+
<td>56.5</td>
|
350 |
+
<td>10</td>
|
351 |
+
</tr>
|
352 |
+
<tr>
|
353 |
+
<td>2</td>
|
354 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic</th>
|
355 |
+
<td>1.39</td>
|
356 |
+
<td>2.7</td>
|
357 |
+
<td>210</td>
|
358 |
+
<td>5.3</td>
|
359 |
+
<td>106</td>
|
360 |
+
<td>2.7</td>
|
361 |
+
<td>207</td>
|
362 |
+
<td>2.8</td>
|
363 |
+
<td>203</td>
|
364 |
+
<td>21.1</td>
|
365 |
+
<td>27</td>
|
366 |
+
<td>21.4</td>
|
367 |
+
<td>26</td>
|
368 |
+
<td>11.5</td>
|
369 |
+
<td>49</td>
|
370 |
+
<td>47.2</td>
|
371 |
+
<td>12</td>
|
372 |
+
</tr>
|
373 |
+
<tr>
|
374 |
+
<td>1</td>
|
375 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
|
376 |
+
<td>1.83</td>
|
377 |
+
<td>4.0</td>
|
378 |
+
<td>277</td>
|
379 |
+
<td>7.9</td>
|
380 |
+
<td>138</td>
|
381 |
+
<td>4.1</td>
|
382 |
+
<td>266</td>
|
383 |
+
<td>4.2</td>
|
384 |
+
<td>262</td>
|
385 |
+
<td>31.2</td>
|
386 |
+
<td>35</td>
|
387 |
+
<td>31.8</td>
|
388 |
+
<td>34</td>
|
389 |
+
<td>17.8</td>
|
390 |
+
<td>61</td>
|
391 |
+
<td>61.4</td>
|
392 |
+
<td>18</td>
|
393 |
+
</tr>
|
394 |
+
</tbody>
|
395 |
+
</table>
|
396 |
+
|
397 |
+
**Use case profiles: prompt tokens / generation tokens
|
398 |
+
|
399 |
+
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
|
400 |
+
|
401 |
+
|
402 |
+
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
|
403 |
+
<table>
|
404 |
+
<thead>
|
405 |
+
<tr>
|
406 |
+
<th></th>
|
407 |
+
<th></th>
|
408 |
+
<th></th>
|
409 |
+
<th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
|
410 |
+
<th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
|
411 |
+
<th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
|
412 |
+
<th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
|
413 |
+
<th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
|
414 |
+
<th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
|
415 |
+
<th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
|
416 |
+
<th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
|
417 |
+
</tr>
|
418 |
+
<tr>
|
419 |
+
<th>Hardware</th>
|
420 |
+
<th>Model</th>
|
421 |
+
<th>Average cost reduction</th>
|
422 |
+
<th>Maximum throughput (QPS)</th>
|
423 |
+
<th>QPD</th>
|
424 |
+
<th>Maximum throughput (QPS)</th>
|
425 |
+
<th>QPD</th>
|
426 |
+
<th>Maximum throughput (QPS)</th>
|
427 |
+
<th>QPD</th>
|
428 |
+
<th>Maximum throughput (QPS)</th>
|
429 |
+
<th>QPD</th>
|
430 |
+
<th>Maximum throughput (QPS)</th>
|
431 |
+
<th>QPD</th>
|
432 |
+
<th>Maximum throughput (QPS)</th>
|
433 |
+
<th>QPD</th>
|
434 |
+
<th>Maximum throughput (QPS)</th>
|
435 |
+
<th>QPD</th>
|
436 |
+
<th>Maximum throughput (QPS)</th>
|
437 |
+
<th>QPD</th>
|
438 |
+
</tr>
|
439 |
+
</thead>
|
440 |
+
<tbody style="text-align: center" >
|
441 |
+
<tr>
|
442 |
+
<th rowspan="3" valign="top">H100x4</th>
|
443 |
+
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
|
444 |
+
<td>---</td>
|
445 |
+
<td>14.04</td>
|
446 |
+
<td>2113</td>
|
447 |
+
<td>10.85</td>
|
448 |
+
<td>1634</td>
|
449 |
+
<td>12.25</td>
|
450 |
+
<td>1844</td>
|
451 |
+
<td>9.93</td>
|
452 |
+
<td>1494</td>
|
453 |
+
<td>3.68</td>
|
454 |
+
<td>554</td>
|
455 |
+
<td>2.82</td>
|
456 |
+
<td>425</td>
|
457 |
+
<td>1.81</td>
|
458 |
+
<td>273</td>
|
459 |
+
<td>0.35</td>
|
460 |
+
<td>52</td>
|
461 |
+
</tr>
|
462 |
+
<tr>
|
463 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic</th>
|
464 |
+
<td>1.78</td>
|
465 |
+
<td>41.44</td>
|
466 |
+
<td>6236</td>
|
467 |
+
<td>19.64</td>
|
468 |
+
<td>2956</td>
|
469 |
+
<td>21.03</td>
|
470 |
+
<td>3166</td>
|
471 |
+
<td>16.72</td>
|
472 |
+
<td>2516</td>
|
473 |
+
<td>6.01</td>
|
474 |
+
<td>904</td>
|
475 |
+
<td>4.46</td>
|
476 |
+
<td>672</td>
|
477 |
+
<td>2.55</td>
|
478 |
+
<td>383</td>
|
479 |
+
<td>0.49</td>
|
480 |
+
<td>74</td>
|
481 |
+
</tr>
|
482 |
+
<tr>
|
483 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
|
484 |
+
<td>1.45</td>
|
485 |
+
<td>36.61</td>
|
486 |
+
<td>5509</td>
|
487 |
+
<td>15.12</td>
|
488 |
+
<td>2275</td>
|
489 |
+
<td>16.24</td>
|
490 |
+
<td>2443</td>
|
491 |
+
<td>13.22</td>
|
492 |
+
<td>1990</td>
|
493 |
+
<td>5.48</td>
|
494 |
+
<td>825</td>
|
495 |
+
<td>3.01</td>
|
496 |
+
<td>453</td>
|
497 |
+
<td>2.07</td>
|
498 |
+
<td>312</td>
|
499 |
+
<td>0.43</td>
|
500 |
+
<td>64</td>
|
501 |
+
</tr>
|
502 |
+
</tbody>
|
503 |
+
</table>
|
504 |
+
|
505 |
+
**Use case profiles: prompt tokens / generation tokens
|
506 |
+
|
507 |
+
**QPS: Queries per second.
|
508 |
+
|
509 |
+
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
|