nm-research commited on
Commit
ab94e6d
·
verified ·
1 Parent(s): 1f006c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +237 -0
README.md CHANGED
@@ -270,3 +270,240 @@ lm_eval \
270
  </tr>
271
  </tbody>
272
  </table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270
  </tr>
271
  </tbody>
272
  </table>
273
+
274
+
275
+ ## Inference Performance
276
+
277
+
278
+ This model achieves up to 1.4x speedup in single-stream deployment and up to 1.8x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
279
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
280
+
281
+ <details>
282
+ <summary>Benchmarking Command</summary>
283
+
284
+ ```
285
+ guidellm --model neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
286
+ ```
287
+ </details>
288
+
289
+ ### Single-stream performance (measured with vLLM version 0.7.2)
290
+ <table>
291
+ <thead>
292
+ <tr>
293
+ <th></th>
294
+ <th></th>
295
+ <th></th>
296
+ <th></th>
297
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
298
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
299
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
300
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
301
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
302
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
303
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
304
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
305
+ </tr>
306
+ <tr>
307
+ <th>GPU class</th>
308
+ <th>Number of GPUs</th>
309
+ <th>Model</th>
310
+ <th>Average cost reduction</th>
311
+ <th>Latency (s)</th>
312
+ <th>QPD</th>
313
+ <th>Latency (s)</th>
314
+ <th>QPD</th>
315
+ <th>Latency (s)</th>
316
+ <th>QPD</th>
317
+ <th>Latency (s)</th>
318
+ <th>QPD</th>
319
+ <th>Latency (s)</th>
320
+ <th>QPD</th>
321
+ <th>Latency (s)</th>
322
+ <th>QPD</th>
323
+ <th>Latency (s)</th>
324
+ <th>QPD</th>
325
+ <th>Latency (s)</th>
326
+ <th>QPD</th>
327
+ </tr>
328
+ </thead>
329
+ <tbody style="text-align: center" >
330
+ <tr>
331
+ <th rowspan="3" valign="top">H100</th>
332
+ <td>2</td>
333
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
334
+ <td>---</td>
335
+ <td>3.8</td>
336
+ <td>149</td>
337
+ <td>7.6</td>
338
+ <td>74</td>
339
+ <td>3.9</td>
340
+ <td>146</td>
341
+ <td>3.9</td>
342
+ <td>144</td>
343
+ <td>30.0</td>
344
+ <td>19</td>
345
+ <td>30.4</td>
346
+ <td>19</td>
347
+ <td>16.1</td>
348
+ <td>35</td>
349
+ <td>56.5</td>
350
+ <td>10</td>
351
+ </tr>
352
+ <tr>
353
+ <td>2</td>
354
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic</th>
355
+ <td>1.39</td>
356
+ <td>2.7</td>
357
+ <td>210</td>
358
+ <td>5.3</td>
359
+ <td>106</td>
360
+ <td>2.7</td>
361
+ <td>207</td>
362
+ <td>2.8</td>
363
+ <td>203</td>
364
+ <td>21.1</td>
365
+ <td>27</td>
366
+ <td>21.4</td>
367
+ <td>26</td>
368
+ <td>11.5</td>
369
+ <td>49</td>
370
+ <td>47.2</td>
371
+ <td>12</td>
372
+ </tr>
373
+ <tr>
374
+ <td>1</td>
375
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
376
+ <td>1.83</td>
377
+ <td>4.0</td>
378
+ <td>277</td>
379
+ <td>7.9</td>
380
+ <td>138</td>
381
+ <td>4.1</td>
382
+ <td>266</td>
383
+ <td>4.2</td>
384
+ <td>262</td>
385
+ <td>31.2</td>
386
+ <td>35</td>
387
+ <td>31.8</td>
388
+ <td>34</td>
389
+ <td>17.8</td>
390
+ <td>61</td>
391
+ <td>61.4</td>
392
+ <td>18</td>
393
+ </tr>
394
+ </tbody>
395
+ </table>
396
+
397
+ **Use case profiles: prompt tokens / generation tokens
398
+
399
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
400
+
401
+
402
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
403
+ <table>
404
+ <thead>
405
+ <tr>
406
+ <th></th>
407
+ <th></th>
408
+ <th></th>
409
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
410
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
411
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
412
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
413
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
414
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
415
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
416
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
417
+ </tr>
418
+ <tr>
419
+ <th>Hardware</th>
420
+ <th>Model</th>
421
+ <th>Average cost reduction</th>
422
+ <th>Maximum throughput (QPS)</th>
423
+ <th>QPD</th>
424
+ <th>Maximum throughput (QPS)</th>
425
+ <th>QPD</th>
426
+ <th>Maximum throughput (QPS)</th>
427
+ <th>QPD</th>
428
+ <th>Maximum throughput (QPS)</th>
429
+ <th>QPD</th>
430
+ <th>Maximum throughput (QPS)</th>
431
+ <th>QPD</th>
432
+ <th>Maximum throughput (QPS)</th>
433
+ <th>QPD</th>
434
+ <th>Maximum throughput (QPS)</th>
435
+ <th>QPD</th>
436
+ <th>Maximum throughput (QPS)</th>
437
+ <th>QPD</th>
438
+ </tr>
439
+ </thead>
440
+ <tbody style="text-align: center" >
441
+ <tr>
442
+ <th rowspan="3" valign="top">H100x4</th>
443
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
444
+ <td>---</td>
445
+ <td>14.04</td>
446
+ <td>2113</td>
447
+ <td>10.85</td>
448
+ <td>1634</td>
449
+ <td>12.25</td>
450
+ <td>1844</td>
451
+ <td>9.93</td>
452
+ <td>1494</td>
453
+ <td>3.68</td>
454
+ <td>554</td>
455
+ <td>2.82</td>
456
+ <td>425</td>
457
+ <td>1.81</td>
458
+ <td>273</td>
459
+ <td>0.35</td>
460
+ <td>52</td>
461
+ </tr>
462
+ <tr>
463
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic</th>
464
+ <td>1.78</td>
465
+ <td>41.44</td>
466
+ <td>6236</td>
467
+ <td>19.64</td>
468
+ <td>2956</td>
469
+ <td>21.03</td>
470
+ <td>3166</td>
471
+ <td>16.72</td>
472
+ <td>2516</td>
473
+ <td>6.01</td>
474
+ <td>904</td>
475
+ <td>4.46</td>
476
+ <td>672</td>
477
+ <td>2.55</td>
478
+ <td>383</td>
479
+ <td>0.49</td>
480
+ <td>74</td>
481
+ </tr>
482
+ <tr>
483
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
484
+ <td>1.45</td>
485
+ <td>36.61</td>
486
+ <td>5509</td>
487
+ <td>15.12</td>
488
+ <td>2275</td>
489
+ <td>16.24</td>
490
+ <td>2443</td>
491
+ <td>13.22</td>
492
+ <td>1990</td>
493
+ <td>5.48</td>
494
+ <td>825</td>
495
+ <td>3.01</td>
496
+ <td>453</td>
497
+ <td>2.07</td>
498
+ <td>312</td>
499
+ <td>0.43</td>
500
+ <td>64</td>
501
+ </tr>
502
+ </tbody>
503
+ </table>
504
+
505
+ **Use case profiles: prompt tokens / generation tokens
506
+
507
+ **QPS: Queries per second.
508
+
509
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).