Update README.md
Browse files
README.md
CHANGED
|
@@ -42,27 +42,24 @@ Only the weights and activations of the linear operators within transformers blo
|
|
| 42 |
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
| 43 |
|
| 44 |
```python
|
| 45 |
-
from vllm import LLM, SamplingParams
|
| 46 |
from transformers import AutoTokenizer
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
{"role": "
|
| 56 |
-
{"role": "user", "content": "Who are you?"},
|
| 57 |
]
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
llm = LLM(model=model_id, trust_remote_code=True, max_model_len=4096, tensor_parallel_size=4)
|
| 62 |
|
| 63 |
-
outputs = llm.generate(
|
| 64 |
|
| 65 |
-
generated_text =
|
| 66 |
print(generated_text)
|
| 67 |
```
|
| 68 |
|
|
|
|
| 42 |
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
| 43 |
|
| 44 |
```python
|
|
|
|
| 45 |
from transformers import AutoTokenizer
|
| 46 |
+
from vllm import LLM, SamplingParams
|
| 47 |
|
| 48 |
+
max_model_len, tp_size = 4096, 4
|
| 49 |
+
model_name = "neuralmagic/DeepSeek-Coder-V2-Instruct-FP8"
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 51 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
|
| 52 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
| 53 |
|
| 54 |
+
messages_list = [
|
| 55 |
+
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
|
|
|
|
| 56 |
]
|
| 57 |
|
| 58 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
| 61 |
|
| 62 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
| 63 |
print(generated_text)
|
| 64 |
```
|
| 65 |
|