David
commited on
Commit
·
5829743
1
Parent(s):
0b7b93b
Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,11 @@ widget:
|
|
12 |
- text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
|
13 |
candidate_labels: "cultura, sociedad, economia, salud, deportes"
|
14 |
---
|
15 |
-
#
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Usage
|
18 |
|
@@ -28,6 +32,26 @@ classifier(
|
|
28 |
)
|
29 |
```
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
## Training
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
- text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
|
13 |
candidate_labels: "cultura, sociedad, economia, salud, deportes"
|
14 |
---
|
15 |
+
# Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA
|
16 |
+
|
17 |
+
*Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html).
|
18 |
+
|
19 |
+
In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier.
|
20 |
|
21 |
## Usage
|
22 |
|
|
|
32 |
)
|
33 |
```
|
34 |
|
35 |
+
## Metrics
|
36 |
+
|
37 |
+
| Model | Params | XNLI (acc) | \*MLSUM (acc) |
|
38 |
+
| --- | --- | --- | --- |
|
39 |
+
| zs BETO | 110M | 0.799 | 0.530 |
|
40 |
+
| zs SELECTRA medium | 41M | 0.807 | 0.589 |
|
41 |
+
| zs SELECTRA small | 22M | 0.795 | 0.446 |
|
42 |
+
|
43 |
+
\*evaluated with zero-shot learning (ZSL)
|
44 |
+
|
45 |
+
- **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion.
|
46 |
+
- **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb)
|
47 |
+
|
48 |
## Training
|
49 |
|
50 |
+
Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details.
|
51 |
+
|
52 |
+
## Authors
|
53 |
+
|
54 |
+
- David Fidalgo ([GitHub](https://github.com/dcfidalgo))
|
55 |
+
- Daniel Vila ([GitHub](https://github.com/dvsrepo))
|
56 |
+
- Francisco Aranda ([GitHub](https://github.com/frascuchon))
|
57 |
+
- Javier Lopez ([GitHub](https://github.com/javispp))
|