Update model card
Browse files
README.md
CHANGED
@@ -1,51 +1,59 @@
|
|
1 |
---
|
2 |
language: en
|
3 |
-
license: apache-2.0
|
4 |
tags:
|
5 |
-
-
|
6 |
-
-
|
7 |
-
-
|
|
|
8 |
---
|
9 |
|
10 |
-
# KnullAI v2 - Fine-tuned on
|
11 |
|
12 |
-
This model is a fine-tuned version of KnullAI v2, specifically trained on
|
13 |
|
14 |
## Training Data
|
15 |
-
The model was fine-tuned on the
|
16 |
-
-
|
17 |
-
-
|
18 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## Usage
|
21 |
```python
|
22 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
23 |
|
24 |
# Load model and tokenizer
|
25 |
-
model = AutoModelForCausalLM.from_pretrained("
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
27 |
|
28 |
# Example usage
|
29 |
-
|
30 |
-
input_text = f"
|
31 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
32 |
|
33 |
outputs = model.generate(
|
34 |
inputs["input_ids"],
|
35 |
-
max_length=
|
36 |
temperature=0.7,
|
37 |
-
top_p=0.9
|
|
|
38 |
)
|
39 |
|
40 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
print(response)
|
42 |
```
|
43 |
|
44 |
-
## Training
|
45 |
-
-
|
46 |
-
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
- Mixed precision training (fp16)
|
|
|
1 |
---
|
2 |
language: en
|
|
|
3 |
tags:
|
4 |
+
- arxiv
|
5 |
+
- research-papers
|
6 |
+
- text-generation
|
7 |
+
license: apache-2.0
|
8 |
---
|
9 |
|
10 |
+
# KnullAI v2 - Fine-tuned on ArXiver Dataset
|
11 |
|
12 |
+
This model is a fine-tuned version of KnullAI v2, specifically trained on the ArXiver dataset containing research paper information.
|
13 |
|
14 |
## Training Data
|
15 |
+
The model was fine-tuned on the neuralwork/arxiver dataset, which contains:
|
16 |
+
- Paper titles
|
17 |
+
- Abstracts
|
18 |
+
- Authors
|
19 |
+
- Publication dates
|
20 |
+
- Links
|
21 |
+
|
22 |
+
## Model Details
|
23 |
+
- Base model: Rawkney/knullAi_v2
|
24 |
+
- Training type: Causal language modeling
|
25 |
+
- Hardware: T4 GPU
|
26 |
+
- Mixed precision: FP16
|
27 |
|
28 |
## Usage
|
29 |
```python
|
30 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
31 |
|
32 |
# Load model and tokenizer
|
33 |
+
model = AutoModelForCausalLM.from_pretrained("YOUR_REPO_ID")
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("YOUR_REPO_ID")
|
35 |
|
36 |
# Example usage
|
37 |
+
title = "Your paper title"
|
38 |
+
input_text = f"Title: {title}\nAbstract:"
|
39 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
40 |
|
41 |
outputs = model.generate(
|
42 |
inputs["input_ids"],
|
43 |
+
max_length=256,
|
44 |
temperature=0.7,
|
45 |
+
top_p=0.9,
|
46 |
+
pad_token_id=tokenizer.eos_token_id
|
47 |
)
|
48 |
|
49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
print(response)
|
51 |
```
|
52 |
|
53 |
+
## Training Parameters
|
54 |
+
- Learning rate: 1e-5
|
55 |
+
- Epochs: 1
|
56 |
+
- Batch size: 1
|
57 |
+
- Gradient accumulation steps: 16
|
58 |
+
- Mixed precision training (fp16)
|
59 |
+
- Max sequence length: 512
|
|