Update README.md
Browse files
README.md
CHANGED
@@ -23,18 +23,14 @@ To start using the Rashik24/Mistral-Instruct-Bangla model, you can use the follo
|
|
23 |
```Python
|
24 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
25 |
|
26 |
-
from peft import PeftModel, PeftConfig
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
def load_model(model_name):
|
31 |
-
|
32 |
-
model = AutoModelForCausalLM.from_pretrained(
|
33 |
-
|
34 |
|
35 |
def generate_text(prompt, model, tokenizer):
|
36 |
inputs = tokenizer.encode(prompt, return_tensors='pt')
|
37 |
-
outputs = model.generate(inputs, max_length=
|
38 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
|
40 |
#Load the model
|
|
|
23 |
```Python
|
24 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
25 |
|
|
|
|
|
|
|
|
|
26 |
def load_model(model_name):
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
29 |
+
return model, tokenizer
|
30 |
|
31 |
def generate_text(prompt, model, tokenizer):
|
32 |
inputs = tokenizer.encode(prompt, return_tensors='pt')
|
33 |
+
outputs = model.generate(inputs, max_length=256, num_return_sequences=1)
|
34 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
|
36 |
#Load the model
|