Commit
·
5b768a7
1
Parent(s):
400e9e7
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 247.77 +/- 17.39
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f93435a0050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f93435a00e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f93435a0170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f93435a0200>", "_build": "<function ActorCriticPolicy._build at 0x7f93435a0290>", "forward": "<function ActorCriticPolicy.forward at 0x7f93435a0320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f93435a03b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f93435a0440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f93435a04d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f93435a0560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f93435a05f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f93435e96c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665333971802443595, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMNkz0ZD6s/vKyBPmL7rL6F9K49SIv7PQAAAAAAAAAA5v5pPXRbaj+0dxg8CRvAvi6HtDxcbkm9AAAAAAAAAABz6Lg+Q3dcPzUItr1tl6m+J6s0PsMpUL4AAAAAAAAAAEAH7r0YoHI/Ypgcvh7z0b6nVBO+RuGmPAAAAAAAAAAAJrjCPatyvD2Eeyg+U1savvx/vz1WiZk7AAAAAAAAAACzlss9rh8DP++Mv7uzUYS+FWIHOyWhVr0AAAAAAAAAAICuLT6Xv14/iOLYPMdGvr4GlAw+CojCvAAAAAAAAAAAc4++PcTMcj8huqY9o8ervoVhwT3NUfe9AAAAAAAAAABa4tc924jBPaL4Ob4LcYS+1uAWvSVpWL0AAAAAAAAAAJqQyD3DsUG63lPutkSqC7Ez5ba6H1YMNgAAgD8AAAAAGr5zPbj3wLt4AGw7PTqZPMxpNL2WKYE9AACAPwAAgD+aq1Q9uCLku5tWazx8bJc8F3FFPe4Wfr0AAIA/AACAP31Hj74yIF4/+RE7PjSnrL42242+1QaAPgAAAAAAAAAAIFEVvtBklT+O/7q+3EPnvgd9br5qjCG+AAAAAAAAAABmotg7FVMZPqtFbjz3h32+WqxUPHP/BzwAAAAAAAAAALN/Tj2xnT4/raq9vRPKu75tmRO9p2sSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEFoPXyZ6QUCUhpRSlIwBbJRLyowBdJRHQJESBbs4T9N1fZQoaAZoCWgPQwgSvCGNCnpCQJSGlFKUaBVL/2gWR0CREu84PwuvdX2UKGgGaAloD0MIi4wOSEJjckCUhpRSlGgVTTMBaBZHQJEUUaZQYUF1fZQoaAZoCWgPQwhA2ZQrPO5xQJSGlFKUaBVNjgFoFkdAkRU1PrOZ9nV9lChoBmgJaA9DCCUFFsCUyW1AlIaUUpRoFU1qAWgWR0CRFfrk8zRAdX2UKGgGaAloD0MId4U+WMZ3ckCUhpRSlGgVTT4BaBZHQJEW18G9pRJ1fZQoaAZoCWgPQwhuUPut3ThyQJSGlFKUaBVNagFoFkdAkRdsByS3b3V9lChoBmgJaA9DCD//PXhtBm1AlIaUUpRoFU1DAWgWR0CRGIuuzQeFdX2UKGgGaAloD0MIV0PiHosecUCUhpRSlGgVTQoBaBZHQJEZi619fC11fZQoaAZoCWgPQwj04VmCDLZuQJSGlFKUaBVNUAFoFkdAkRoc7ZFoc3V9lChoBmgJaA9DCM7F3/aEcnFAlIaUUpRoFU2MAWgWR0CRHBry1/lRdX2UKGgGaAloD0MIVwVqMXiAcUCUhpRSlGgVTV0BaBZHQJEcMcfeUIN1fZQoaAZoCWgPQwhHADeLl/xvQJSGlFKUaBVNLQFoFkdAkR0P7iyY5XV9lChoBmgJaA9DCHBE96wrinNAlIaUUpRoFU1NAWgWR0CRHbOIInjRdX2UKGgGaAloD0MIB3x+GCGUckCUhpRSlGgVS/loFkdAkR3ZFw1iv3V9lChoBmgJaA9DCH1BCwkYwm9AlIaUUpRoFU3GAWgWR0CRHh4KQaJidX2UKGgGaAloD0MIT62+uupbcECUhpRSlGgVTU0BaBZHQJEeHgLqlgt1fZQoaAZoCWgPQwgiizTxDttwQJSGlFKUaBVNTwFoFkdAkR5iAUcn3XV9lChoBmgJaA9DCFDCTNu/citAlIaUUpRoFUvcaBZHQJEe6bVjI7x1fZQoaAZoCWgPQwjw4CcOoMlyQJSGlFKUaBVNSQFoFkdAkR8G8Empl3V9lChoBmgJaA9DCJCIKZHEdnFAlIaUUpRoFU0lAWgWR0CRH73Roh6jdX2UKGgGaAloD0MIpG38icquQ0CUhpRSlGgVS9toFkdAkSAW7OE/S3V9lChoBmgJaA9DCOwwJv29bXBAlIaUUpRoFU0uAWgWR0CRIIMBIWgwdX2UKGgGaAloD0MIi2t8JvurOECUhpRSlGgVS9NoFkdAkSCPJq7AcnV9lChoBmgJaA9DCPDeUWPC1XBAlIaUUpRoFU1OAWgWR0CRIloZQ53ldX2UKGgGaAloD0MIEayql1+AbkCUhpRSlGgVTQgBaBZHQJEiYd3jdYZ1fZQoaAZoCWgPQwjidJKtritvQJSGlFKUaBVNBwFoFkdAkSP5zPrv9nV9lChoBmgJaA9DCCy5isXvim9AlIaUUpRoFU0FAWgWR0CRI/rFwT/RdX2UKGgGaAloD0MIAB+8dmmbSUCUhpRSlGgVS/toFkdAkSWCVW0Z33V9lChoBmgJaA9DCIDz4sRX30xAlIaUUpRoFUvDaBZHQJEloQjD8+B1fZQoaAZoCWgPQwgUCaaa2RhvQJSGlFKUaBVNHwFoFkdAkSZtxAB1cXV9lChoBmgJaA9DCD51rFL6325AlIaUUpRoFU0+AWgWR0CRJv9tuUD/dX2UKGgGaAloD0MISguXVdjGcECUhpRSlGgVTSkBaBZHQJEnolMRHwx1fZQoaAZoCWgPQwgzxRwEXQ9xQJSGlFKUaBVNRAFoFkdAkSmO5Fw1i3V9lChoBmgJaA9DCPBt+rPfmXBAlIaUUpRoFU0PAWgWR0CRKfbKRuCPdX2UKGgGaAloD0MI4EigwSYQcUCUhpRSlGgVTS4BaBZHQJErLROUMXt1fZQoaAZoCWgPQwhViEfipXlwQJSGlFKUaBVNkgFoFkdAkStW3BpHqnV9lChoBmgJaA9DCDxnCwhthnBAlIaUUpRoFU2QAWgWR0CRK4y+HrQgdX2UKGgGaAloD0MI0T3rGu2YcECUhpRSlGgVTYQBaBZHQJEsKJ53Tux1fZQoaAZoCWgPQwil8+FZgppvQJSGlFKUaBVNGAFoFkdAkSytxQzk63V9lChoBmgJaA9DCAPv5NPjiXBAlIaUUpRoFU03AWgWR0CRLafT1CgLdX2UKGgGaAloD0MIXMzPDc0fcUCUhpRSlGgVTRUBaBZHQJEuIku6ErZ1fZQoaAZoCWgPQwg26Etvf49vQJSGlFKUaBVNqwFoFkdAkS6NXgccVHV9lChoBmgJaA9DCFNcVfbdVnJAlIaUUpRoFU0YAWgWR0CRL65eZ5RkdX2UKGgGaAloD0MIiQyreONTckCUhpRSlGgVTS8BaBZHQJEwWP/7zkJ1fZQoaAZoCWgPQwiOVyB60ipyQJSGlFKUaBVNJgFoFkdAkTDbbpNbknV9lChoBmgJaA9DCOpdvB83IHJAlIaUUpRoFU0gAWgWR0CRMRw2ETQFdX2UKGgGaAloD0MIXDy85wDTcECUhpRSlGgVTYMBaBZHQJFEzqLS/j91fZQoaAZoCWgPQwjE6SRbnU1wQJSGlFKUaBVNKwFoFkdAkUUfkJa7mXV9lChoBmgJaA9DCEjBU8gVWHBAlIaUUpRoFU0qAWgWR0CRRqRL9MsZdX2UKGgGaAloD0MI3Qw34DMJcECUhpRSlGgVTTQBaBZHQJFIj/m1YyR1fZQoaAZoCWgPQwg98gcDTy1vQJSGlFKUaBVNYAFoFkdAkUkl/MGHHnV9lChoBmgJaA9DCPgzvFkDFXBAlIaUUpRoFU0AAWgWR0CRSZSApazNdX2UKGgGaAloD0MIdjdPdcgfTUCUhpRSlGgVS8toFkdAkUn9+9allHV9lChoBmgJaA9DCGb1DrfDTHFAlIaUUpRoFU0tAWgWR0CRSgcvM8oydX2UKGgGaAloD0MIMKGCw4t3ckCUhpRSlGgVTUABaBZHQJFKF9gF5fN1fZQoaAZoCWgPQwjrjzAMGClwQJSGlFKUaBVL/2gWR0CRShgAZKnOdX2UKGgGaAloD0MIkrOwp92HcECUhpRSlGgVTYQBaBZHQJFLjtqpLmJ1fZQoaAZoCWgPQwhZiuQrgSlwQJSGlFKUaBVNIQFoFkdAkU1oUWVNYnV9lChoBmgJaA9DCHREvkvpfXJAlIaUUpRoFU1mAWgWR0CRTeUUO/cndX2UKGgGaAloD0MI3KFhMaoYc0CUhpRSlGgVTdABaBZHQJFN8IyCWeJ1fZQoaAZoCWgPQwiqLXWQF7lyQJSGlFKUaBVNHgFoFkdAkU4al+EytXV9lChoBmgJaA9DCJ9b6EoEu3BAlIaUUpRoFU1CAWgWR0CRUAECvHLidX2UKGgGaAloD0MI7ncoCrQjcUCUhpRSlGgVTRgBaBZHQJFQdcNYr8R1fZQoaAZoCWgPQwhCmUaTC51wQJSGlFKUaBVNSgFoFkdAkVChYq5LAnV9lChoBmgJaA9DCHXo9Lxbm3BAlIaUUpRoFU2AAWgWR0CRUS/4ZdfLdX2UKGgGaAloD0MITifZ6nLGQkCUhpRSlGgVS9ZoFkdAkVE3JYDDCXV9lChoBmgJaA9DCH2zzY3pwU9AlIaUUpRoFUvgaBZHQJFRa4/eLvV1fZQoaAZoCWgPQwi+9WG90X9wQJSGlFKUaBVNNAFoFkdAkVK+98JD3XV9lChoBmgJaA9DCEypS8axL2xAlIaUUpRoFU0bAWgWR0CRUs6KLsKLdX2UKGgGaAloD0MIoPoHkYx+bkCUhpRSlGgVTRUBaBZHQJFTA95hScd1fZQoaAZoCWgPQwiJCtXNRdByQJSGlFKUaBVNSQFoFkdAkVPHPqs2enV9lChoBmgJaA9DCGGqmbVUVXNAlIaUUpRoFU1xAWgWR0CRVe+5OJtSdX2UKGgGaAloD0MIdsWM8HZ8b0CUhpRSlGgVTTEBaBZHQJFYF82Jiy91fZQoaAZoCWgPQwjpR8MpM0pwQJSGlFKUaBVNdwFoFkdAkVgmpMpPRHV9lChoBmgJaA9DCHtMpDSbWG9AlIaUUpRoFU1PAWgWR0CRWMLk0aZQdX2UKGgGaAloD0MIQWMmUa8ucUCUhpRSlGgVTUcBaBZHQJFZOcMEzO51fZQoaAZoCWgPQwhJhEawcdNwQJSGlFKUaBVNWAFoFkdAkVmzQAuIynV9lChoBmgJaA9DCJmByvj3XTBAlIaUUpRoFUvZaBZHQJFajtKIznB1fZQoaAZoCWgPQwi8BRIUPzJxQJSGlFKUaBVNLwFoFkdAkVrbqt5lfHV9lChoBmgJaA9DCBCRmnZx9HBAlIaUUpRoFU0dAWgWR0CRW1T850bMdX2UKGgGaAloD0MIKO/jaM5scUCUhpRSlGgVTS8BaBZHQJFbtxEORT11fZQoaAZoCWgPQwg8odefRLpuQJSGlFKUaBVNOAFoFkdAkVwBhH9WIXV9lChoBmgJaA9DCDM2dLO/Q3FAlIaUUpRoFU10AWgWR0CRXMa0x/NJdX2UKGgGaAloD0MIL00R4LT2cECUhpRSlGgVTSMBaBZHQJFdBRLsa891fZQoaAZoCWgPQwjiXMMMjadtQJSGlFKUaBVNJwFoFkdAkV4sfV7QcHV9lChoBmgJaA9DCMo0mlyM7XBAlIaUUpRoFU2bAWgWR0CRXm2Hck+pdX2UKGgGaAloD0MIvyfWqfJxb0CUhpRSlGgVTWgBaBZHQJFfQOH31z11fZQoaAZoCWgPQwiG4o43ObJxQJSGlFKUaBVNIQFoFkdAkV/wBkqc3HV9lChoBmgJaA9DCB0gmKNHdnBAlIaUUpRoFU0JAWgWR0CRYOKLsKLLdX2UKGgGaAloD0MIUwWjknoGcUCUhpRSlGgVTUsBaBZHQJFjW64Ds+p1fZQoaAZoCWgPQwjYSX1ZmuVwQJSGlFKUaBVNHAFoFkdAkWQMdkrf+HV9lChoBmgJaA9DCA0YJH1a/3FAlIaUUpRoFU1TAWgWR0CRZGFr2xptdX2UKGgGaAloD0MIrB4wDxlMbkCUhpRSlGgVTR8BaBZHQJFkf8uSOip1fZQoaAZoCWgPQwjcLckB+4VwQJSGlFKUaBVNUQFoFkdAkWS/29L6DXV9lChoBmgJaA9DCPd2S3JABnNAlIaUUpRoFU1IAWgWR0CRZNsmOU+tdX2UKGgGaAloD0MIlxqhnyn0cECUhpRSlGgVS/1oFkdAkWVvZRKpUHV9lChoBmgJaA9DCJ+RCI0gYHBAlIaUUpRoFU0dAWgWR0CRZW/R3NcGdX2UKGgGaAloD0MIuagWEcWncUCUhpRSlGgVTTkBaBZHQJFl+WfK6nR1fZQoaAZoCWgPQwgMj/0sli1xQJSGlFKUaBVNTAFoFkdAkWYy1eBxxXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.1", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1facc1bdf91d7c42ac27d14804d66f91862f6a985189e9e9595818c404cae8c1
|
3 |
+
size 147140
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.1
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f93435a0050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f93435a00e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f93435a0170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f93435a0200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f93435a0290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f93435a0320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f93435a03b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f93435a0440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f93435a04d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f93435a0560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f93435a05f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f93435e96c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1665333971802443595,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMNkz0ZD6s/vKyBPmL7rL6F9K49SIv7PQAAAAAAAAAA5v5pPXRbaj+0dxg8CRvAvi6HtDxcbkm9AAAAAAAAAABz6Lg+Q3dcPzUItr1tl6m+J6s0PsMpUL4AAAAAAAAAAEAH7r0YoHI/Ypgcvh7z0b6nVBO+RuGmPAAAAAAAAAAAJrjCPatyvD2Eeyg+U1savvx/vz1WiZk7AAAAAAAAAACzlss9rh8DP++Mv7uzUYS+FWIHOyWhVr0AAAAAAAAAAICuLT6Xv14/iOLYPMdGvr4GlAw+CojCvAAAAAAAAAAAc4++PcTMcj8huqY9o8ervoVhwT3NUfe9AAAAAAAAAABa4tc924jBPaL4Ob4LcYS+1uAWvSVpWL0AAAAAAAAAAJqQyD3DsUG63lPutkSqC7Ez5ba6H1YMNgAAgD8AAAAAGr5zPbj3wLt4AGw7PTqZPMxpNL2WKYE9AACAPwAAgD+aq1Q9uCLku5tWazx8bJc8F3FFPe4Wfr0AAIA/AACAP31Hj74yIF4/+RE7PjSnrL42242+1QaAPgAAAAAAAAAAIFEVvtBklT+O/7q+3EPnvgd9br5qjCG+AAAAAAAAAABmotg7FVMZPqtFbjz3h32+WqxUPHP/BzwAAAAAAAAAALN/Tj2xnT4/raq9vRPKu75tmRO9p2sSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEFoPXyZ6QUCUhpRSlIwBbJRLyowBdJRHQJESBbs4T9N1fZQoaAZoCWgPQwgSvCGNCnpCQJSGlFKUaBVL/2gWR0CREu84PwuvdX2UKGgGaAloD0MIi4wOSEJjckCUhpRSlGgVTTMBaBZHQJEUUaZQYUF1fZQoaAZoCWgPQwhA2ZQrPO5xQJSGlFKUaBVNjgFoFkdAkRU1PrOZ9nV9lChoBmgJaA9DCCUFFsCUyW1AlIaUUpRoFU1qAWgWR0CRFfrk8zRAdX2UKGgGaAloD0MId4U+WMZ3ckCUhpRSlGgVTT4BaBZHQJEW18G9pRJ1fZQoaAZoCWgPQwhuUPut3ThyQJSGlFKUaBVNagFoFkdAkRdsByS3b3V9lChoBmgJaA9DCD//PXhtBm1AlIaUUpRoFU1DAWgWR0CRGIuuzQeFdX2UKGgGaAloD0MIV0PiHosecUCUhpRSlGgVTQoBaBZHQJEZi619fC11fZQoaAZoCWgPQwj04VmCDLZuQJSGlFKUaBVNUAFoFkdAkRoc7ZFoc3V9lChoBmgJaA9DCM7F3/aEcnFAlIaUUpRoFU2MAWgWR0CRHBry1/lRdX2UKGgGaAloD0MIVwVqMXiAcUCUhpRSlGgVTV0BaBZHQJEcMcfeUIN1fZQoaAZoCWgPQwhHADeLl/xvQJSGlFKUaBVNLQFoFkdAkR0P7iyY5XV9lChoBmgJaA9DCHBE96wrinNAlIaUUpRoFU1NAWgWR0CRHbOIInjRdX2UKGgGaAloD0MIB3x+GCGUckCUhpRSlGgVS/loFkdAkR3ZFw1iv3V9lChoBmgJaA9DCH1BCwkYwm9AlIaUUpRoFU3GAWgWR0CRHh4KQaJidX2UKGgGaAloD0MIT62+uupbcECUhpRSlGgVTU0BaBZHQJEeHgLqlgt1fZQoaAZoCWgPQwgiizTxDttwQJSGlFKUaBVNTwFoFkdAkR5iAUcn3XV9lChoBmgJaA9DCFDCTNu/citAlIaUUpRoFUvcaBZHQJEe6bVjI7x1fZQoaAZoCWgPQwjw4CcOoMlyQJSGlFKUaBVNSQFoFkdAkR8G8Empl3V9lChoBmgJaA9DCJCIKZHEdnFAlIaUUpRoFU0lAWgWR0CRH73Roh6jdX2UKGgGaAloD0MIpG38icquQ0CUhpRSlGgVS9toFkdAkSAW7OE/S3V9lChoBmgJaA9DCOwwJv29bXBAlIaUUpRoFU0uAWgWR0CRIIMBIWgwdX2UKGgGaAloD0MIi2t8JvurOECUhpRSlGgVS9NoFkdAkSCPJq7AcnV9lChoBmgJaA9DCPDeUWPC1XBAlIaUUpRoFU1OAWgWR0CRIloZQ53ldX2UKGgGaAloD0MIEayql1+AbkCUhpRSlGgVTQgBaBZHQJEiYd3jdYZ1fZQoaAZoCWgPQwjidJKtritvQJSGlFKUaBVNBwFoFkdAkSP5zPrv9nV9lChoBmgJaA9DCCy5isXvim9AlIaUUpRoFU0FAWgWR0CRI/rFwT/RdX2UKGgGaAloD0MIAB+8dmmbSUCUhpRSlGgVS/toFkdAkSWCVW0Z33V9lChoBmgJaA9DCIDz4sRX30xAlIaUUpRoFUvDaBZHQJEloQjD8+B1fZQoaAZoCWgPQwgUCaaa2RhvQJSGlFKUaBVNHwFoFkdAkSZtxAB1cXV9lChoBmgJaA9DCD51rFL6325AlIaUUpRoFU0+AWgWR0CRJv9tuUD/dX2UKGgGaAloD0MISguXVdjGcECUhpRSlGgVTSkBaBZHQJEnolMRHwx1fZQoaAZoCWgPQwgzxRwEXQ9xQJSGlFKUaBVNRAFoFkdAkSmO5Fw1i3V9lChoBmgJaA9DCPBt+rPfmXBAlIaUUpRoFU0PAWgWR0CRKfbKRuCPdX2UKGgGaAloD0MI4EigwSYQcUCUhpRSlGgVTS4BaBZHQJErLROUMXt1fZQoaAZoCWgPQwhViEfipXlwQJSGlFKUaBVNkgFoFkdAkStW3BpHqnV9lChoBmgJaA9DCDxnCwhthnBAlIaUUpRoFU2QAWgWR0CRK4y+HrQgdX2UKGgGaAloD0MI0T3rGu2YcECUhpRSlGgVTYQBaBZHQJEsKJ53Tux1fZQoaAZoCWgPQwil8+FZgppvQJSGlFKUaBVNGAFoFkdAkSytxQzk63V9lChoBmgJaA9DCAPv5NPjiXBAlIaUUpRoFU03AWgWR0CRLafT1CgLdX2UKGgGaAloD0MIXMzPDc0fcUCUhpRSlGgVTRUBaBZHQJEuIku6ErZ1fZQoaAZoCWgPQwg26Etvf49vQJSGlFKUaBVNqwFoFkdAkS6NXgccVHV9lChoBmgJaA9DCFNcVfbdVnJAlIaUUpRoFU0YAWgWR0CRL65eZ5RkdX2UKGgGaAloD0MIiQyreONTckCUhpRSlGgVTS8BaBZHQJEwWP/7zkJ1fZQoaAZoCWgPQwiOVyB60ipyQJSGlFKUaBVNJgFoFkdAkTDbbpNbknV9lChoBmgJaA9DCOpdvB83IHJAlIaUUpRoFU0gAWgWR0CRMRw2ETQFdX2UKGgGaAloD0MIXDy85wDTcECUhpRSlGgVTYMBaBZHQJFEzqLS/j91fZQoaAZoCWgPQwjE6SRbnU1wQJSGlFKUaBVNKwFoFkdAkUUfkJa7mXV9lChoBmgJaA9DCEjBU8gVWHBAlIaUUpRoFU0qAWgWR0CRRqRL9MsZdX2UKGgGaAloD0MI3Qw34DMJcECUhpRSlGgVTTQBaBZHQJFIj/m1YyR1fZQoaAZoCWgPQwg98gcDTy1vQJSGlFKUaBVNYAFoFkdAkUkl/MGHHnV9lChoBmgJaA9DCPgzvFkDFXBAlIaUUpRoFU0AAWgWR0CRSZSApazNdX2UKGgGaAloD0MIdjdPdcgfTUCUhpRSlGgVS8toFkdAkUn9+9allHV9lChoBmgJaA9DCGb1DrfDTHFAlIaUUpRoFU0tAWgWR0CRSgcvM8oydX2UKGgGaAloD0MIMKGCw4t3ckCUhpRSlGgVTUABaBZHQJFKF9gF5fN1fZQoaAZoCWgPQwjrjzAMGClwQJSGlFKUaBVL/2gWR0CRShgAZKnOdX2UKGgGaAloD0MIkrOwp92HcECUhpRSlGgVTYQBaBZHQJFLjtqpLmJ1fZQoaAZoCWgPQwhZiuQrgSlwQJSGlFKUaBVNIQFoFkdAkU1oUWVNYnV9lChoBmgJaA9DCHREvkvpfXJAlIaUUpRoFU1mAWgWR0CRTeUUO/cndX2UKGgGaAloD0MI3KFhMaoYc0CUhpRSlGgVTdABaBZHQJFN8IyCWeJ1fZQoaAZoCWgPQwiqLXWQF7lyQJSGlFKUaBVNHgFoFkdAkU4al+EytXV9lChoBmgJaA9DCJ9b6EoEu3BAlIaUUpRoFU1CAWgWR0CRUAECvHLidX2UKGgGaAloD0MI7ncoCrQjcUCUhpRSlGgVTRgBaBZHQJFQdcNYr8R1fZQoaAZoCWgPQwhCmUaTC51wQJSGlFKUaBVNSgFoFkdAkVChYq5LAnV9lChoBmgJaA9DCHXo9Lxbm3BAlIaUUpRoFU2AAWgWR0CRUS/4ZdfLdX2UKGgGaAloD0MITifZ6nLGQkCUhpRSlGgVS9ZoFkdAkVE3JYDDCXV9lChoBmgJaA9DCH2zzY3pwU9AlIaUUpRoFUvgaBZHQJFRa4/eLvV1fZQoaAZoCWgPQwi+9WG90X9wQJSGlFKUaBVNNAFoFkdAkVK+98JD3XV9lChoBmgJaA9DCEypS8axL2xAlIaUUpRoFU0bAWgWR0CRUs6KLsKLdX2UKGgGaAloD0MIoPoHkYx+bkCUhpRSlGgVTRUBaBZHQJFTA95hScd1fZQoaAZoCWgPQwiJCtXNRdByQJSGlFKUaBVNSQFoFkdAkVPHPqs2enV9lChoBmgJaA9DCGGqmbVUVXNAlIaUUpRoFU1xAWgWR0CRVe+5OJtSdX2UKGgGaAloD0MIdsWM8HZ8b0CUhpRSlGgVTTEBaBZHQJFYF82Jiy91fZQoaAZoCWgPQwjpR8MpM0pwQJSGlFKUaBVNdwFoFkdAkVgmpMpPRHV9lChoBmgJaA9DCHtMpDSbWG9AlIaUUpRoFU1PAWgWR0CRWMLk0aZQdX2UKGgGaAloD0MIQWMmUa8ucUCUhpRSlGgVTUcBaBZHQJFZOcMEzO51fZQoaAZoCWgPQwhJhEawcdNwQJSGlFKUaBVNWAFoFkdAkVmzQAuIynV9lChoBmgJaA9DCJmByvj3XTBAlIaUUpRoFUvZaBZHQJFajtKIznB1fZQoaAZoCWgPQwi8BRIUPzJxQJSGlFKUaBVNLwFoFkdAkVrbqt5lfHV9lChoBmgJaA9DCBCRmnZx9HBAlIaUUpRoFU0dAWgWR0CRW1T850bMdX2UKGgGaAloD0MIKO/jaM5scUCUhpRSlGgVTS8BaBZHQJFbtxEORT11fZQoaAZoCWgPQwg8odefRLpuQJSGlFKUaBVNOAFoFkdAkVwBhH9WIXV9lChoBmgJaA9DCDM2dLO/Q3FAlIaUUpRoFU10AWgWR0CRXMa0x/NJdX2UKGgGaAloD0MIL00R4LT2cECUhpRSlGgVTSMBaBZHQJFdBRLsa891fZQoaAZoCWgPQwjiXMMMjadtQJSGlFKUaBVNJwFoFkdAkV4sfV7QcHV9lChoBmgJaA9DCMo0mlyM7XBAlIaUUpRoFU2bAWgWR0CRXm2Hck+pdX2UKGgGaAloD0MIvyfWqfJxb0CUhpRSlGgVTWgBaBZHQJFfQOH31z11fZQoaAZoCWgPQwiG4o43ObJxQJSGlFKUaBVNIQFoFkdAkV/wBkqc3HV9lChoBmgJaA9DCB0gmKNHdnBAlIaUUpRoFU0JAWgWR0CRYOKLsKLLdX2UKGgGaAloD0MIUwWjknoGcUCUhpRSlGgVTUsBaBZHQJFjW64Ds+p1fZQoaAZoCWgPQwjYSX1ZmuVwQJSGlFKUaBVNHAFoFkdAkWQMdkrf+HV9lChoBmgJaA9DCA0YJH1a/3FAlIaUUpRoFU1TAWgWR0CRZGFr2xptdX2UKGgGaAloD0MIrB4wDxlMbkCUhpRSlGgVTR8BaBZHQJFkf8uSOip1fZQoaAZoCWgPQwjcLckB+4VwQJSGlFKUaBVNUQFoFkdAkWS/29L6DXV9lChoBmgJaA9DCPd2S3JABnNAlIaUUpRoFU1IAWgWR0CRZNsmOU+tdX2UKGgGaAloD0MIlxqhnyn0cECUhpRSlGgVS/1oFkdAkWVvZRKpUHV9lChoBmgJaA9DCJ+RCI0gYHBAlIaUUpRoFU0dAWgWR0CRZW/R3NcGdX2UKGgGaAloD0MIuagWEcWncUCUhpRSlGgVTTkBaBZHQJFl+WfK6nR1fZQoaAZoCWgPQwgMj/0sli1xQJSGlFKUaBVNTAFoFkdAkWYy1eBxxXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:104c3956ed528db921afa99ee46c6e788b0540ef1a5da06cc4ceb0c6a2151e05
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8c3a558ea4e6976f4ac3ad2f4ff85fcb80891d3e2f7f5be46832be0133f471c
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.1
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25420dd5d2f836242aa654f7e2a77bacd32d865cbfa56d767af4daa1e611cd41
|
3 |
+
size 211750
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 247.76946250592113, "std_reward": 17.38804926479832, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-09T17:11:11.635791"}
|