f1llama / streamlit_app.py
Rafii's picture
streamlit
9e67127
raw
history blame
805 Bytes
import streamlit as st
from mlx_lm import load, generate
# Load your model and tokenizer
model, tokenizer = load("Rafii/f1llama")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# response = generate(model, tokenizer, prompt=prompt, verbose=True)
st.title("Your F1 Bro")
# User input
user_input = st.text_input("Enter text:")
if st.button("Submit"):
# Tokenize input and make predictions
# inputs = tokenizer(user_input, return_tensors="pt")
# outputs = model(**inputs)
response = generate(model, tokenizer, prompt=user_input, verbose=True)
st.write(response)