Commit
·
3e5e249
1
Parent(s):
9585e2a
Upload visual.py
Browse files
visual.py
ADDED
|
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
from collections import OrderedDict
|
| 7 |
+
import math
|
| 8 |
+
import requests
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
from functools import partial
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from typing import Callable, Optional, Sequence, Tuple, List
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
from torch import nn
|
| 17 |
+
from torch.nn import functional as F
|
| 18 |
+
from torch.nn.init import trunc_normal_
|
| 19 |
+
from torchvision import transforms
|
| 20 |
+
from torchvision.transforms import InterpolationMode
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_abs_pos(abs_pos, tgt_size):
|
| 24 |
+
# abs_pos: L, C
|
| 25 |
+
# tgt_size: M
|
| 26 |
+
# return: M, C
|
| 27 |
+
src_size = int(math.sqrt(abs_pos.size(0)))
|
| 28 |
+
tgt_size = int(math.sqrt(tgt_size))
|
| 29 |
+
dtype = abs_pos.dtype
|
| 30 |
+
|
| 31 |
+
if src_size != tgt_size:
|
| 32 |
+
return F.interpolate(
|
| 33 |
+
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
| 34 |
+
size=(tgt_size, tgt_size),
|
| 35 |
+
mode="bicubic",
|
| 36 |
+
align_corners=False,
|
| 37 |
+
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
| 38 |
+
else:
|
| 39 |
+
return abs_pos
|
| 40 |
+
|
| 41 |
+
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
| 42 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
| 43 |
+
"""
|
| 44 |
+
grid_size: int of the grid height and width
|
| 45 |
+
return:
|
| 46 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
| 47 |
+
"""
|
| 48 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 49 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 50 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 51 |
+
grid = np.stack(grid, axis=0)
|
| 52 |
+
|
| 53 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 54 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 55 |
+
if cls_token:
|
| 56 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
| 57 |
+
return pos_embed
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 61 |
+
assert embed_dim % 2 == 0
|
| 62 |
+
|
| 63 |
+
# use half of dimensions to encode grid_h
|
| 64 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 65 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 66 |
+
|
| 67 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 68 |
+
return emb
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 72 |
+
"""
|
| 73 |
+
embed_dim: output dimension for each position
|
| 74 |
+
pos: a list of positions to be encoded: size (M,)
|
| 75 |
+
out: (M, D)
|
| 76 |
+
"""
|
| 77 |
+
assert embed_dim % 2 == 0
|
| 78 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
| 79 |
+
omega /= embed_dim / 2.
|
| 80 |
+
omega = 1. / 10000**omega # (D/2,)
|
| 81 |
+
|
| 82 |
+
pos = pos.reshape(-1) # (M,)
|
| 83 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
| 84 |
+
|
| 85 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 86 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 87 |
+
|
| 88 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 89 |
+
return emb
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class Resampler(nn.Module):
|
| 93 |
+
"""
|
| 94 |
+
A 2D perceiver-resampler network with one cross attention layers by
|
| 95 |
+
(grid_size**2) learnable queries and 2d sincos pos_emb
|
| 96 |
+
Outputs:
|
| 97 |
+
A tensor with the shape of (grid_size**2, embed_dim)
|
| 98 |
+
"""
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
grid_size,
|
| 102 |
+
embed_dim,
|
| 103 |
+
num_heads,
|
| 104 |
+
kv_dim=None,
|
| 105 |
+
norm_layer=nn.LayerNorm
|
| 106 |
+
):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self.num_queries = grid_size ** 2
|
| 109 |
+
self.embed_dim = embed_dim
|
| 110 |
+
self.num_heads = num_heads
|
| 111 |
+
|
| 112 |
+
self.pos_embed = nn.Parameter(
|
| 113 |
+
torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
|
| 114 |
+
).requires_grad_(False)
|
| 115 |
+
|
| 116 |
+
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
| 117 |
+
trunc_normal_(self.query, std=.02)
|
| 118 |
+
|
| 119 |
+
if kv_dim is not None and kv_dim != embed_dim:
|
| 120 |
+
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
| 121 |
+
else:
|
| 122 |
+
self.kv_proj = nn.Identity()
|
| 123 |
+
|
| 124 |
+
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
|
| 125 |
+
self.ln_q = norm_layer(embed_dim)
|
| 126 |
+
self.ln_kv = norm_layer(embed_dim)
|
| 127 |
+
|
| 128 |
+
self.apply(self._init_weights)
|
| 129 |
+
|
| 130 |
+
def _init_weights(self, m):
|
| 131 |
+
if isinstance(m, nn.Linear):
|
| 132 |
+
trunc_normal_(m.weight, std=.02)
|
| 133 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 134 |
+
nn.init.constant_(m.bias, 0)
|
| 135 |
+
elif isinstance(m, nn.LayerNorm):
|
| 136 |
+
nn.init.constant_(m.bias, 0)
|
| 137 |
+
nn.init.constant_(m.weight, 1.0)
|
| 138 |
+
|
| 139 |
+
def forward(self, x, attn_mask=None):
|
| 140 |
+
|
| 141 |
+
pos_embed = get_abs_pos(self.pos_embed, x.size(1))
|
| 142 |
+
|
| 143 |
+
x = self.kv_proj(x)
|
| 144 |
+
x = self.ln_kv(x).permute(1, 0, 2)
|
| 145 |
+
|
| 146 |
+
N = x.shape[1]
|
| 147 |
+
q = self.ln_q(self.query)
|
| 148 |
+
out = self.attn(
|
| 149 |
+
self._repeat(q, N) + self.pos_embed.unsqueeze(1),
|
| 150 |
+
x + pos_embed.unsqueeze(1),
|
| 151 |
+
x,
|
| 152 |
+
attn_mask=attn_mask)[0]
|
| 153 |
+
return out.permute(1, 0, 2)
|
| 154 |
+
|
| 155 |
+
def _repeat(self, query, N: int):
|
| 156 |
+
return query.unsqueeze(1).repeat(1, N, 1)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
class VisualAttention(nn.Module):
|
| 160 |
+
"""self-attention layer class.
|
| 161 |
+
|
| 162 |
+
Self-attention layer takes input with size [s, b, h]
|
| 163 |
+
and returns output of the same size.
|
| 164 |
+
"""
|
| 165 |
+
|
| 166 |
+
def __init__(self, embed_dim, num_heads,
|
| 167 |
+
bias=True, kdim=None, vdim=None):
|
| 168 |
+
super(VisualAttention, self).__init__()
|
| 169 |
+
self.embed_dim = embed_dim
|
| 170 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
| 171 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
| 172 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 173 |
+
|
| 174 |
+
self.num_heads = num_heads
|
| 175 |
+
|
| 176 |
+
# Per attention head and per partition values.
|
| 177 |
+
assert embed_dim % num_heads == 0
|
| 178 |
+
self.hidden_size_per_attention_head = embed_dim // num_heads
|
| 179 |
+
self.num_attention_heads_per_partition = num_heads
|
| 180 |
+
self.hidden_size_per_partition = embed_dim
|
| 181 |
+
|
| 182 |
+
# Strided linear layer.
|
| 183 |
+
assert self._qkv_same_embed_dim, 'Only Support SelfAttention Currently'
|
| 184 |
+
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim)
|
| 185 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim)
|
| 186 |
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
| 187 |
+
|
| 188 |
+
def forward(self, query, key, value, attn_mask = None):
|
| 189 |
+
# query/key/value: [sq, b, h]
|
| 190 |
+
sq, b, _ = query.size()
|
| 191 |
+
|
| 192 |
+
assert query is key, 'Only Support Self-Attention Currently'
|
| 193 |
+
sk = sq
|
| 194 |
+
mixed_x_layer = self.in_proj(query)
|
| 195 |
+
|
| 196 |
+
# [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
|
| 197 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
| 198 |
+
(self.num_attention_heads_per_partition,
|
| 199 |
+
3 * self.hidden_size_per_attention_head)
|
| 200 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
| 201 |
+
|
| 202 |
+
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
| 203 |
+
query_layer, key_layer, value_layer = mixed_x_layer.split(
|
| 204 |
+
self.hidden_size_per_attention_head, dim=-1)
|
| 205 |
+
|
| 206 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
| 207 |
+
query_layer = query_layer.view(sq,
|
| 208 |
+
b * self.num_attention_heads_per_partition,
|
| 209 |
+
self.hidden_size_per_attention_head).transpose(0, 1)
|
| 210 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
| 211 |
+
key_layer = key_layer.view(sk,
|
| 212 |
+
b * self.num_attention_heads_per_partition,
|
| 213 |
+
self.hidden_size_per_attention_head).transpose(0, 1)
|
| 214 |
+
|
| 215 |
+
q_scaled = query_layer / self.norm_factor
|
| 216 |
+
if attn_mask is not None:
|
| 217 |
+
attention_probs = torch.baddbmm(attn_mask, q_scaled, key_layer.transpose(-2, -1))
|
| 218 |
+
else:
|
| 219 |
+
attention_probs = torch.bmm(q_scaled, key_layer.transpose(-2, -1))
|
| 220 |
+
attention_probs = attention_probs.softmax(dim=-1)
|
| 221 |
+
|
| 222 |
+
value_layer = value_layer.view(sk,
|
| 223 |
+
b * self.num_attention_heads_per_partition,
|
| 224 |
+
self.hidden_size_per_attention_head).transpose(0, 1)
|
| 225 |
+
|
| 226 |
+
# matmul: [b * np, sq, hn]
|
| 227 |
+
context_layer = torch.bmm(attention_probs, value_layer)
|
| 228 |
+
|
| 229 |
+
# change view [b, np, sq, hn]
|
| 230 |
+
context_layer = context_layer.view(b,
|
| 231 |
+
self.num_attention_heads_per_partition,
|
| 232 |
+
sq, self.hidden_size_per_attention_head)
|
| 233 |
+
|
| 234 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
| 235 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
| 236 |
+
|
| 237 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
| 238 |
+
new_context_layer_shape = context_layer.size()[:-2] + \
|
| 239 |
+
(self.hidden_size_per_partition,)
|
| 240 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
| 241 |
+
|
| 242 |
+
output = self.out_proj(context_layer)
|
| 243 |
+
|
| 244 |
+
return output
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class VisualAttentionBlock(nn.Module):
|
| 248 |
+
def __init__(
|
| 249 |
+
self,
|
| 250 |
+
d_model: int,
|
| 251 |
+
n_head: int,
|
| 252 |
+
mlp_ratio: float = 4.0,
|
| 253 |
+
act_layer: Callable = nn.GELU,
|
| 254 |
+
norm_layer: Callable = nn.LayerNorm,
|
| 255 |
+
is_cross_attention: bool = False,
|
| 256 |
+
):
|
| 257 |
+
super().__init__()
|
| 258 |
+
|
| 259 |
+
self.ln_1 = norm_layer(d_model)
|
| 260 |
+
if is_cross_attention:
|
| 261 |
+
self.ln_1_kv = norm_layer(d_model)
|
| 262 |
+
|
| 263 |
+
self.ln_2 = norm_layer(d_model)
|
| 264 |
+
mlp_width = int(d_model * mlp_ratio)
|
| 265 |
+
self.attn = VisualAttention(d_model, n_head)
|
| 266 |
+
self.mlp = nn.Sequential(OrderedDict([
|
| 267 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
| 268 |
+
("gelu", act_layer()),
|
| 269 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
| 270 |
+
]))
|
| 271 |
+
|
| 272 |
+
def attention(
|
| 273 |
+
self,
|
| 274 |
+
q_x: torch.Tensor,
|
| 275 |
+
k_x: Optional[torch.Tensor] = None,
|
| 276 |
+
v_x: Optional[torch.Tensor] = None,
|
| 277 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 278 |
+
):
|
| 279 |
+
k_x = k_x if k_x is not None else q_x
|
| 280 |
+
v_x = v_x if v_x is not None else q_x
|
| 281 |
+
|
| 282 |
+
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
|
| 283 |
+
return self.attn(q_x, k_x, v_x, attn_mask=attn_mask)
|
| 284 |
+
|
| 285 |
+
def forward(
|
| 286 |
+
self,
|
| 287 |
+
q_x: torch.Tensor,
|
| 288 |
+
k_x: Optional[torch.Tensor] = None,
|
| 289 |
+
v_x: Optional[torch.Tensor] = None,
|
| 290 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 291 |
+
):
|
| 292 |
+
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
|
| 293 |
+
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
|
| 294 |
+
|
| 295 |
+
x = q_x + self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)
|
| 296 |
+
x = x + self.mlp(self.ln_2(x))
|
| 297 |
+
return x
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class TransformerBlock(nn.Module):
|
| 301 |
+
def __init__(
|
| 302 |
+
self,
|
| 303 |
+
width: int,
|
| 304 |
+
layers: int,
|
| 305 |
+
heads: int,
|
| 306 |
+
mlp_ratio: float = 4.0,
|
| 307 |
+
act_layer: Callable = nn.GELU,
|
| 308 |
+
norm_layer: Callable = nn.LayerNorm,
|
| 309 |
+
):
|
| 310 |
+
super().__init__()
|
| 311 |
+
self.width = width
|
| 312 |
+
self.layers = layers
|
| 313 |
+
|
| 314 |
+
self.resblocks = nn.ModuleList([
|
| 315 |
+
VisualAttentionBlock(
|
| 316 |
+
width, heads, mlp_ratio, act_layer=act_layer, norm_layer=norm_layer)
|
| 317 |
+
for _ in range(layers)
|
| 318 |
+
])
|
| 319 |
+
|
| 320 |
+
def get_cast_dtype(self) -> torch.dtype:
|
| 321 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
| 322 |
+
|
| 323 |
+
def get_cast_device(self) -> torch.device:
|
| 324 |
+
return self.resblocks[0].mlp.c_fc.weight.device
|
| 325 |
+
|
| 326 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 327 |
+
for r in self.resblocks:
|
| 328 |
+
x = r(x, attn_mask=attn_mask)
|
| 329 |
+
return x
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
class VisionTransformer(nn.Module):
|
| 333 |
+
|
| 334 |
+
def __init__(
|
| 335 |
+
self,
|
| 336 |
+
image_size: int,
|
| 337 |
+
patch_size: int,
|
| 338 |
+
width: int,
|
| 339 |
+
layers: int,
|
| 340 |
+
heads: int,
|
| 341 |
+
mlp_ratio: float,
|
| 342 |
+
n_queries: int = 256,
|
| 343 |
+
output_dim: int = 512,
|
| 344 |
+
**kwargs
|
| 345 |
+
):
|
| 346 |
+
super().__init__()
|
| 347 |
+
image_height, image_width = self.image_size = (image_size, image_size)
|
| 348 |
+
patch_height, patch_width = self.patch_size = (patch_size, patch_size)
|
| 349 |
+
self.grid_size = (image_height // patch_height, image_width // patch_width)
|
| 350 |
+
self.output_dim = output_dim
|
| 351 |
+
|
| 352 |
+
mean = (0.48145466, 0.4578275, 0.40821073)
|
| 353 |
+
std = (0.26862954, 0.26130258, 0.27577711)
|
| 354 |
+
self.image_transform = transforms.Compose([
|
| 355 |
+
transforms.Resize(
|
| 356 |
+
(image_size, image_size),
|
| 357 |
+
interpolation=InterpolationMode.BICUBIC
|
| 358 |
+
),
|
| 359 |
+
transforms.ToTensor(),
|
| 360 |
+
transforms.Normalize(mean=mean, std=std),
|
| 361 |
+
])
|
| 362 |
+
|
| 363 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
| 364 |
+
|
| 365 |
+
# class embeddings and positional embeddings
|
| 366 |
+
scale = width ** -0.5
|
| 367 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn(256, width))
|
| 368 |
+
|
| 369 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
| 370 |
+
act_layer = nn.GELU
|
| 371 |
+
|
| 372 |
+
self.ln_pre = norm_layer(width)
|
| 373 |
+
self.transformer = TransformerBlock(
|
| 374 |
+
width,
|
| 375 |
+
layers,
|
| 376 |
+
heads,
|
| 377 |
+
mlp_ratio,
|
| 378 |
+
act_layer=act_layer,
|
| 379 |
+
norm_layer=norm_layer,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
self.attn_pool = Resampler(
|
| 383 |
+
grid_size=int(math.sqrt(n_queries)),
|
| 384 |
+
embed_dim=output_dim,
|
| 385 |
+
num_heads=output_dim // 128,
|
| 386 |
+
kv_dim=width,
|
| 387 |
+
norm_layer=norm_layer,
|
| 388 |
+
)
|
| 389 |
+
self.ln_post = norm_layer(output_dim)
|
| 390 |
+
self.proj = nn.Parameter((output_dim** -0.5) * torch.randn(output_dim, output_dim))
|
| 391 |
+
|
| 392 |
+
def forward(self, x: torch.Tensor):
|
| 393 |
+
x = x.to(
|
| 394 |
+
dtype=self.transformer.get_cast_dtype(),
|
| 395 |
+
device=self.transformer.get_cast_device(),
|
| 396 |
+
)
|
| 397 |
+
# to patches
|
| 398 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
| 399 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
| 400 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 401 |
+
|
| 402 |
+
x = x + get_abs_pos(self.positional_embedding, x.size(1))
|
| 403 |
+
|
| 404 |
+
x = self.ln_pre(x)
|
| 405 |
+
|
| 406 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 407 |
+
x = self.transformer(x)
|
| 408 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 409 |
+
|
| 410 |
+
x = self.attn_pool(x)
|
| 411 |
+
x = self.ln_post(x)
|
| 412 |
+
x = x @ self.proj
|
| 413 |
+
|
| 414 |
+
return x
|
| 415 |
+
|
| 416 |
+
def encode(self, image_paths: List[str]):
|
| 417 |
+
images = []
|
| 418 |
+
for image_path in image_paths:
|
| 419 |
+
if image_path.startswith("http://") or image_path.startswith("https://"):
|
| 420 |
+
image = Image.open(requests.get(image_path, stream=True).raw)
|
| 421 |
+
else:
|
| 422 |
+
image = Image.open(image_path)
|
| 423 |
+
image = image.convert("RGB")
|
| 424 |
+
images.append(self.image_transform(image))
|
| 425 |
+
images = torch.stack(images, dim=0)
|
| 426 |
+
return self(images)
|