QuickSilver007 commited on
Commit
fa15c9c
·
1 Parent(s): ed5c828

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.84 +/- 0.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2c41cbc255b8ff892e2f70c9b6397680526a2cd05d07a5bdde900ccdb45c426
3
+ size 113684
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f095d1e9870>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f095d1f8b00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1684667214581490178,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAASeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAABzeDv8Zmhr8zV2k+FY+iv0BHAT8Y6NA/kUaePyGEyD76ehk/8ra6P5AxBL9Z4/I+PmqFvaFHcb7xeJ2/PNcoP+SGrD/tRGu/nhwOv4tjVz9mKSE/LUUxvwfUD71KLZe+CkvUPwCybr+1zos/lKhpv6cfv78NWGE++/HJv44Hkr6zogE/lHHKP738ob+N17k/yNzAP1LAkL/tJj++R988P49cxb+lUH0/6V6vvYJc+j7lc52/wYLaPY/Tyj1Ypb8/lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAABJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjyUaA5LEEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]]",
38
+ "desired_goal": "[[-1.0251168 -1.0500114 0.2278717 ]\n [-1.2699915 0.50499344 1.6320829 ]\n [ 1.2365285 0.39163306 0.5995327 ]\n [ 1.458708 -0.51638126 0.47439077]\n [-0.06514405 -0.2356248 -1.2302533 ]\n [ 0.6595342 1.3478665 -0.9190205 ]\n [-0.55512416 0.84136266 0.62953794]\n [-0.6924618 -0.03511431 -0.2952674 ]\n [ 1.65854 -0.93240356 1.0922457 ]\n [-0.91272855 -1.4931535 0.22006245]\n [-1.5776972 -0.2852139 0.50638884]\n [ 1.5815911 -1.2655255 1.4518906 ]\n [ 1.5067377 -1.1308692 -0.18667193]\n [ 0.73778194 -1.5418872 0.9895118 ]\n [-0.08563025 0.48898703 -1.2300993 ]\n [ 0.10669471 0.09903633 1.4972334 ]]",
39
+ "observation": "[[ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAA2SAFPpu02z3q9pA+o85ePUvLgz04bhw9ioQSvtRGGb5yQRQ94Wn/vU+w+L0j5QI+/ZAxvNPTFz7miHo9Qr7rPeZJjT24JZM+xxX+ve+3nD0dP5A8sTtMPQ4iNLzWFZg+d7XnPSmktrxAH388GzQSPiVTAj7COoY9eWCFvcmsez1ppko7L0Z6Pc6glb3V4GA+iH+3PX36ij1CAZE+7U6NvbZe3LzK8JE+8LnOvdZ2DrxWvUg9TeNXPbZedD0NJ2c+lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LEEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.13000812 0.10727807 0.2831338 ]\n [ 0.05439628 0.06435259 0.03819105]\n [-0.14308372 -0.14968425 0.03619523]\n [-0.12471367 -0.12143003 0.12782721]\n [-0.01083779 0.14826898 0.06116571]\n [ 0.11510898 0.06898861 0.28739715]\n [-0.12406497 0.0765227 0.01760822]\n [ 0.04986161 -0.01099445 0.2970416 ]\n [ 0.11313909 -0.02229507 0.01557142]\n [ 0.14277689 0.1272703 0.06554176]\n [-0.06512541 0.06144408 0.00309219]\n [ 0.06110209 -0.07306062 0.21960767]\n [ 0.08959872 0.06786058 0.28321272]\n [-0.0689982 -0.02690063 0.2850402 ]\n [-0.10094059 -0.00869532 0.04900869]\n [ 0.05270701 0.05966064 0.2257349 ]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKzV7oBWY/b+UhpRSlIwBbJRLMowBdJRHQKOzpCIk7fZ1fZQoaAZoCWgPQwgnpaDbSxrsv5SGlFKUaBVLMmgWR0Cjs2OfVZs9dX2UKGgGaAloD0MI7l7uk6MA/b+UhpRSlGgVSzJoFkdAo7MpJyyUtHV9lChoBmgJaA9DCBoyHqUSnuS/lIaUUpRoFUsyaBZHQKOyyURFqi51fZQoaAZoCWgPQwi4IcZrXnUDwJSGlFKUaBVLMmgWR0CjvZCF9KEndX2UKGgGaAloD0MIbXU5JSCm8L+UhpRSlGgVSzJoFkdAo71UAksz23V9lChoBmgJaA9DCGJO0CaHT92/lIaUUpRoFUsyaBZHQKO9GNVinYR1fZQoaAZoCWgPQwgGaFvNOqPwv5SGlFKUaBVLMmgWR0CjvNtt65XmdX2UKGgGaAloD0MIPL1SliEO5b+UhpRSlGgVSzJoFkdAo7yeMqBmPHV9lChoBmgJaA9DCElm9Q63g/G/lIaUUpRoFUsyaBZHQKO8Y+mm+Cd1fZQoaAZoCWgPQwgMzuDvF3P5v5SGlFKUaBVLMmgWR0CjvBwxnFo+dX2UKGgGaAloD0MInkKu1LMg67+UhpRSlGgVSzJoFkdAo7vcjs2NvXV9lChoBmgJaA9DCMS12sNeqOO/lIaUUpRoFUsyaBZHQKO7nt0FKTV1fZQoaAZoCWgPQwgUP8bctQT9v5SGlFKUaBVLMmgWR0Cju2L+PzWgdX2UKGgGaAloD0MIjln2JLA5+L+UhpRSlGgVSzJoFkdAo7smDHwPRXV9lChoBmgJaA9DCOMZNPRPcOG/lIaUUpRoFUsyaBZHQKO66KgIyCZ1fZQoaAZoCWgPQwjBq+XOTDDwv5SGlFKUaBVLMmgWR0Cjuqovi97GdX2UKGgGaAloD0MIZhU2A1wQ97+UhpRSlGgVSzJoFkdAo7ppHqeK9HV9lChoBmgJaA9DCMbE5uPaUPS/lIaUUpRoFUsyaBZHQKO6Leb/ffp1fZQoaAZoCWgPQwgDQuvhy8Tov5SGlFKUaBVLMmgWR0Cjuc3qiXY2dX2UKGgGaAloD0MIqvI9IxGa87+UhpRSlGgVSzJoFkdAo8GcRcu8LHV9lChoBmgJaA9DCEuS5/o+nPG/lIaUUpRoFUsyaBZHQKPBXn/T9bZ1fZQoaAZoCWgPQwgNjSeCOI/xv5SGlFKUaBVLMmgWR0CjwSI371qWdX2UKGgGaAloD0MIwCUA/5Sq4r+UhpRSlGgVSzJoFkdAo8Dj2tdRi3V9lChoBmgJaA9DCBizJasifAPAlIaUUpRoFUsyaBZHQKPApVI7Njd1fZQoaAZoCWgPQwgXmus00tL4v5SGlFKUaBVLMmgWR0CjwGnGCI1tdX2UKGgGaAloD0MIEtpyLsVV2r+UhpRSlGgVSzJoFkdAo8AhKraM73V9lChoBmgJaA9DCPaZsz7lmAXAlIaUUpRoFUsyaBZHQKO/4JCSidt1fZQoaAZoCWgPQwjdmQmGc438v5SGlFKUaBVLMmgWR0Cjv6IXsPatdX2UKGgGaAloD0MIkZvhBnz+6L+UhpRSlGgVSzJoFkdAo79lihFmWnV9lChoBmgJaA9DCCl1yThG0gLAlIaUUpRoFUsyaBZHQKO/J+NLlFN1fZQoaAZoCWgPQwgogGJkyRzuv5SGlFKUaBVLMmgWR0CjvummUGFBdX2UKGgGaAloD0MI8iN+xRqu47+UhpRSlGgVSzJoFkdAo76p4QjD9HV9lChoBmgJaA9DCPBRf73CgvW/lIaUUpRoFUsyaBZHQKO+aF/QSjB1fZQoaAZoCWgPQwhEigESTeD7v5SGlFKUaBVLMmgWR0CjvixzJZGKdX2UKGgGaAloD0MIjUXT2cmg8b+UhpRSlGgVSzJoFkdAo73MHfMwDnV9lChoBmgJaA9DCAXB49u7RvC/lIaUUpRoFUsyaBZHQKPFmYUFjd51fZQoaAZoCWgPQwhcj8L1KJwDwJSGlFKUaBVLMmgWR0CjxVu0LMLXdX2UKGgGaAloD0MIE9bG2Akv97+UhpRSlGgVSzJoFkdAo8UfMINVinV9lChoBmgJaA9DCIO+9PbnotW/lIaUUpRoFUsyaBZHQKPE4Mir1dx1fZQoaAZoCWgPQwgpXI/C9Sjqv5SGlFKUaBVLMmgWR0CjxKIkZ75VdX2UKGgGaAloD0MIn6ut2F+2B8CUhpRSlGgVSzJoFkdAo8Rml/H5rXV9lChoBmgJaA9DCP7WTpSEhPS/lIaUUpRoFUsyaBZHQKPEHfBvaUR1fZQoaAZoCWgPQwj8j0yHTm8EwJSGlFKUaBVLMmgWR0Cjw91P3ztkdX2UKGgGaAloD0MIMNgN2xbFBsCUhpRSlGgVSzJoFkdAo8Oe6NEPUnV9lChoBmgJaA9DCBnlmZfDrv2/lIaUUpRoFUsyaBZHQKPDYkVN5+p1fZQoaAZoCWgPQwh2/u2yXxcAwJSGlFKUaBVLMmgWR0CjwyRjBl+WdX2UKGgGaAloD0MIAoHOpE1VBsCUhpRSlGgVSzJoFkdAo8LmGyon8nV9lChoBmgJaA9DCMDMd/ATh/q/lIaUUpRoFUsyaBZHQKPCplnRLK51fZQoaAZoCWgPQwjdek0PCgr6v5SGlFKUaBVLMmgWR0CjwmS8J2MbdX2UKGgGaAloD0MI2T9PAwaJ97+UhpRSlGgVSzJoFkdAo8Iow22oenV9lChoBmgJaA9DCMtN1NLcivS/lIaUUpRoFUsyaBZHQKPBx70Fr2x1fZQoaAZoCWgPQwjEmPT3Uvj7v5SGlFKUaBVLMmgWR0CjyaCsGPgfdX2UKGgGaAloD0MIQUrs2t7u/r+UhpRSlGgVSzJoFkdAo8ljeuV5bHV9lChoBmgJaA9DCH6qCg3EMu2/lIaUUpRoFUsyaBZHQKPJJxS5y2h1fZQoaAZoCWgPQwjle0YiNKIAwJSGlFKUaBVLMmgWR0CjyOi66J66dX2UKGgGaAloD0MIehfvx+03BMCUhpRSlGgVSzJoFkdAo8iqKk2xZHV9lChoBmgJaA9DCNy6m6c6BAPAlIaUUpRoFUsyaBZHQKPIbphWo3t1fZQoaAZoCWgPQwimQ6fn3djjv5SGlFKUaBVLMmgWR0CjyCXr2QGOdX2UKGgGaAloD0MIbcX+snvy47+UhpRSlGgVSzJoFkdAo8flMh5gPXV9lChoBmgJaA9DCIfD0sCP6u6/lIaUUpRoFUsyaBZHQKPHpqYZ2p11fZQoaAZoCWgPQwgjvhOzXkwAwJSGlFKUaBVLMmgWR0Cjx2oEbHZLdX2UKGgGaAloD0MIHF97ZklA8r+UhpRSlGgVSzJoFkdAo8csHt4RmXV9lChoBmgJaA9DCEBoPXyZKOm/lIaUUpRoFUsyaBZHQKPG7dAPd2x1fZQoaAZoCWgPQwieCyO9qN3rv5SGlFKUaBVLMmgWR0Cjxq4rz5GjdX2UKGgGaAloD0MI7uvAOSPK7L+UhpRSlGgVSzJoFkdAo8ZscENe+nV9lChoBmgJaA9DCLJoOjsZ3Pi/lIaUUpRoFUsyaBZHQKPGMGzKLbZ1fZQoaAZoCWgPQwj6mA8IdCbov5SGlFKUaBVLMmgWR0Cjxc9TP0I1dX2UKGgGaAloD0MImggbnl5p87+UhpRSlGgVSzJoFkdAo810CzTnaHV9lChoBmgJaA9DCB3Lu+oB8wbAlIaUUpRoFUsyaBZHQKPNNyhBZ6l1fZQoaAZoCWgPQwisNv+vOjICwJSGlFKUaBVLMmgWR0CjzPusDGLldX2UKGgGaAloD0MI2NXkKatp7r+UhpRSlGgVSzJoFkdAo8y+eQMhHXV9lChoBmgJaA9DCJAV/DbE+Oq/lIaUUpRoFUsyaBZHQKPMf8FY+0R1fZQoaAZoCWgPQwg9nStKCcHqv5SGlFKUaBVLMmgWR0CjzERKpT/AdX2UKGgGaAloD0MI1jVaDvRQ77+UhpRSlGgVSzJoFkdAo8v7lV94NnV9lChoBmgJaA9DCFEtIorJG9y/lIaUUpRoFUsyaBZHQKPLuuFpPAR1fZQoaAZoCWgPQwj3cwrys5Hwv5SGlFKUaBVLMmgWR0Cjy3xxcVxkdX2UKGgGaAloD0MIXvHUIw1u67+UhpRSlGgVSzJoFkdAo8s/24/eL3V9lChoBmgJaA9DCGk6OxkcJd6/lIaUUpRoFUsyaBZHQKPLAhePaL51fZQoaAZoCWgPQwiZ9WIoJxr8v5SGlFKUaBVLMmgWR0CjysPKuB+XdX2UKGgGaAloD0MIRDAOLh1z57+UhpRSlGgVSzJoFkdAo8qEIX0oSnV9lChoBmgJaA9DCKWGNgAbEOm/lIaUUpRoFUsyaBZHQKPKQpBHCoF1fZQoaAZoCWgPQwi5GtmVllH7v5SGlFKUaBVLMmgWR0CjygakZaV2dX2UKGgGaAloD0MI/dtlv+408b+UhpRSlGgVSzJoFkdAo8mld/rjYXV9lChoBmgJaA9DCPQyiuWW1vS/lIaUUpRoFUsyaBZHQKPRUpLEk0J1fZQoaAZoCWgPQwikVS3pKGcEwJSGlFKUaBVLMmgWR0Cj0RSfthNNdX2UKGgGaAloD0MIoblOIy0V+b+UhpRSlGgVSzJoFkdAo9DYOe8PF3V9lChoBmgJaA9DCPuT+NwJ9tm/lIaUUpRoFUsyaBZHQKPQmdVea8Z1fZQoaAZoCWgPQwjZlCu8y0X/v5SGlFKUaBVLMmgWR0Cj0FtGEwnIdX2UKGgGaAloD0MISbn7HB+t6r+UhpRSlGgVSzJoFkdAo9AfsC1Z1XV9lChoBmgJaA9DCGKiQQqeQuW/lIaUUpRoFUsyaBZHQKPP1wtrbg11fZQoaAZoCWgPQwi366UpApz3v5SGlFKUaBVLMmgWR0Cjz5Z88cMmdX2UKGgGaAloD0MIaNDQP8HF5b+UhpRSlGgVSzJoFkdAo89YFaB7NXV9lChoBmgJaA9DCDNPrimQ2dS/lIaUUpRoFUsyaBZHQKPPG+A3DN11fZQoaAZoCWgPQwhy4UBIFvD2v5SGlFKUaBVLMmgWR0Cjzt6CUX54dX2UKGgGaAloD0MI409UNqyp2L+UhpRSlGgVSzJoFkdAo86gkona4HV9lChoBmgJaA9DCKku4GWGDeC/lIaUUpRoFUsyaBZHQKPOYTyJ9Ap1fZQoaAZoCWgPQwgBGTp2UInev5SGlFKUaBVLMmgWR0Cjzh++M6zWdX2UKGgGaAloD0MICme3lsnw87+UhpRSlGgVSzJoFkdAo83jwrlNlHV9lChoBmgJaA9DCMsO8Q9b+uq/lIaUUpRoFUsyaBZHQKPNgrAgxJx1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 12500,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 16
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12f45cf925ef203943b5e38fba202e4cf945d60ae8de14b176a7821b2040cbb5
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0186442c9c1d4094c10e564ce016cae7f4f34722807da0997efc9e68928cb9cd
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f095d1e9870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f095d1f8b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684667214581490178, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAASeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/SeTVPjttRzrQBQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAABzeDv8Zmhr8zV2k+FY+iv0BHAT8Y6NA/kUaePyGEyD76ehk/8ra6P5AxBL9Z4/I+PmqFvaFHcb7xeJ2/PNcoP+SGrD/tRGu/nhwOv4tjVz9mKSE/LUUxvwfUD71KLZe+CkvUPwCybr+1zos/lKhpv6cfv78NWGE++/HJv44Hkr6zogE/lHHKP738ob+N17k/yNzAP1LAkL/tJj++R988P49cxb+lUH0/6V6vvYJc+j7lc52/wYLaPY/Tyj1Ypb8/lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAABJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjxJ5NU+O21HOtAFCz+EwaU6OteruoaQAjyUaA5LEEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]\n [0.4177573 0.00076075 0.54305744]]", "desired_goal": "[[-1.0251168 -1.0500114 0.2278717 ]\n [-1.2699915 0.50499344 1.6320829 ]\n [ 1.2365285 0.39163306 0.5995327 ]\n [ 1.458708 -0.51638126 0.47439077]\n [-0.06514405 -0.2356248 -1.2302533 ]\n [ 0.6595342 1.3478665 -0.9190205 ]\n [-0.55512416 0.84136266 0.62953794]\n [-0.6924618 -0.03511431 -0.2952674 ]\n [ 1.65854 -0.93240356 1.0922457 ]\n [-0.91272855 -1.4931535 0.22006245]\n [-1.5776972 -0.2852139 0.50638884]\n [ 1.5815911 -1.2655255 1.4518906 ]\n [ 1.5067377 -1.1308692 -0.18667193]\n [ 0.73778194 -1.5418872 0.9895118 ]\n [-0.08563025 0.48898703 -1.2300993 ]\n [ 0.10669471 0.09903633 1.4972334 ]]", "observation": "[[ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]\n [ 0.4177573 0.00076075 0.54305744 0.00126462 -0.00131104 0.00796903]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAA2SAFPpu02z3q9pA+o85ePUvLgz04bhw9ioQSvtRGGb5yQRQ94Wn/vU+w+L0j5QI+/ZAxvNPTFz7miHo9Qr7rPeZJjT24JZM+xxX+ve+3nD0dP5A8sTtMPQ4iNLzWFZg+d7XnPSmktrxAH388GzQSPiVTAj7COoY9eWCFvcmsez1ppko7L0Z6Pc6glb3V4GA+iH+3PX36ij1CAZE+7U6NvbZe3LzK8JE+8LnOvdZ2DrxWvUg9TeNXPbZedD0NJ2c+lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LEEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13000812 0.10727807 0.2831338 ]\n [ 0.05439628 0.06435259 0.03819105]\n [-0.14308372 -0.14968425 0.03619523]\n [-0.12471367 -0.12143003 0.12782721]\n [-0.01083779 0.14826898 0.06116571]\n [ 0.11510898 0.06898861 0.28739715]\n [-0.12406497 0.0765227 0.01760822]\n [ 0.04986161 -0.01099445 0.2970416 ]\n [ 0.11313909 -0.02229507 0.01557142]\n [ 0.14277689 0.1272703 0.06554176]\n [-0.06512541 0.06144408 0.00309219]\n [ 0.06110209 -0.07306062 0.21960767]\n [ 0.08959872 0.06786058 0.28321272]\n [-0.0689982 -0.02690063 0.2850402 ]\n [-0.10094059 -0.00869532 0.04900869]\n [ 0.05270701 0.05966064 0.2257349 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKzV7oBWY/b+UhpRSlIwBbJRLMowBdJRHQKOzpCIk7fZ1fZQoaAZoCWgPQwgnpaDbSxrsv5SGlFKUaBVLMmgWR0Cjs2OfVZs9dX2UKGgGaAloD0MI7l7uk6MA/b+UhpRSlGgVSzJoFkdAo7MpJyyUtHV9lChoBmgJaA9DCBoyHqUSnuS/lIaUUpRoFUsyaBZHQKOyyURFqi51fZQoaAZoCWgPQwi4IcZrXnUDwJSGlFKUaBVLMmgWR0CjvZCF9KEndX2UKGgGaAloD0MIbXU5JSCm8L+UhpRSlGgVSzJoFkdAo71UAksz23V9lChoBmgJaA9DCGJO0CaHT92/lIaUUpRoFUsyaBZHQKO9GNVinYR1fZQoaAZoCWgPQwgGaFvNOqPwv5SGlFKUaBVLMmgWR0CjvNtt65XmdX2UKGgGaAloD0MIPL1SliEO5b+UhpRSlGgVSzJoFkdAo7yeMqBmPHV9lChoBmgJaA9DCElm9Q63g/G/lIaUUpRoFUsyaBZHQKO8Y+mm+Cd1fZQoaAZoCWgPQwgMzuDvF3P5v5SGlFKUaBVLMmgWR0CjvBwxnFo+dX2UKGgGaAloD0MInkKu1LMg67+UhpRSlGgVSzJoFkdAo7vcjs2NvXV9lChoBmgJaA9DCMS12sNeqOO/lIaUUpRoFUsyaBZHQKO7nt0FKTV1fZQoaAZoCWgPQwgUP8bctQT9v5SGlFKUaBVLMmgWR0Cju2L+PzWgdX2UKGgGaAloD0MIjln2JLA5+L+UhpRSlGgVSzJoFkdAo7smDHwPRXV9lChoBmgJaA9DCOMZNPRPcOG/lIaUUpRoFUsyaBZHQKO66KgIyCZ1fZQoaAZoCWgPQwjBq+XOTDDwv5SGlFKUaBVLMmgWR0Cjuqovi97GdX2UKGgGaAloD0MIZhU2A1wQ97+UhpRSlGgVSzJoFkdAo7ppHqeK9HV9lChoBmgJaA9DCMbE5uPaUPS/lIaUUpRoFUsyaBZHQKO6Leb/ffp1fZQoaAZoCWgPQwgDQuvhy8Tov5SGlFKUaBVLMmgWR0Cjuc3qiXY2dX2UKGgGaAloD0MIqvI9IxGa87+UhpRSlGgVSzJoFkdAo8GcRcu8LHV9lChoBmgJaA9DCEuS5/o+nPG/lIaUUpRoFUsyaBZHQKPBXn/T9bZ1fZQoaAZoCWgPQwgNjSeCOI/xv5SGlFKUaBVLMmgWR0CjwSI371qWdX2UKGgGaAloD0MIwCUA/5Sq4r+UhpRSlGgVSzJoFkdAo8Dj2tdRi3V9lChoBmgJaA9DCBizJasifAPAlIaUUpRoFUsyaBZHQKPApVI7Njd1fZQoaAZoCWgPQwgXmus00tL4v5SGlFKUaBVLMmgWR0CjwGnGCI1tdX2UKGgGaAloD0MIEtpyLsVV2r+UhpRSlGgVSzJoFkdAo8AhKraM73V9lChoBmgJaA9DCPaZsz7lmAXAlIaUUpRoFUsyaBZHQKO/4JCSidt1fZQoaAZoCWgPQwjdmQmGc438v5SGlFKUaBVLMmgWR0Cjv6IXsPatdX2UKGgGaAloD0MIkZvhBnz+6L+UhpRSlGgVSzJoFkdAo79lihFmWnV9lChoBmgJaA9DCCl1yThG0gLAlIaUUpRoFUsyaBZHQKO/J+NLlFN1fZQoaAZoCWgPQwgogGJkyRzuv5SGlFKUaBVLMmgWR0CjvummUGFBdX2UKGgGaAloD0MI8iN+xRqu47+UhpRSlGgVSzJoFkdAo76p4QjD9HV9lChoBmgJaA9DCPBRf73CgvW/lIaUUpRoFUsyaBZHQKO+aF/QSjB1fZQoaAZoCWgPQwhEigESTeD7v5SGlFKUaBVLMmgWR0CjvixzJZGKdX2UKGgGaAloD0MIjUXT2cmg8b+UhpRSlGgVSzJoFkdAo73MHfMwDnV9lChoBmgJaA9DCAXB49u7RvC/lIaUUpRoFUsyaBZHQKPFmYUFjd51fZQoaAZoCWgPQwhcj8L1KJwDwJSGlFKUaBVLMmgWR0CjxVu0LMLXdX2UKGgGaAloD0MIE9bG2Akv97+UhpRSlGgVSzJoFkdAo8UfMINVinV9lChoBmgJaA9DCIO+9PbnotW/lIaUUpRoFUsyaBZHQKPE4Mir1dx1fZQoaAZoCWgPQwgpXI/C9Sjqv5SGlFKUaBVLMmgWR0CjxKIkZ75VdX2UKGgGaAloD0MIn6ut2F+2B8CUhpRSlGgVSzJoFkdAo8Rml/H5rXV9lChoBmgJaA9DCP7WTpSEhPS/lIaUUpRoFUsyaBZHQKPEHfBvaUR1fZQoaAZoCWgPQwj8j0yHTm8EwJSGlFKUaBVLMmgWR0Cjw91P3ztkdX2UKGgGaAloD0MIMNgN2xbFBsCUhpRSlGgVSzJoFkdAo8Oe6NEPUnV9lChoBmgJaA9DCBnlmZfDrv2/lIaUUpRoFUsyaBZHQKPDYkVN5+p1fZQoaAZoCWgPQwh2/u2yXxcAwJSGlFKUaBVLMmgWR0CjwyRjBl+WdX2UKGgGaAloD0MIAoHOpE1VBsCUhpRSlGgVSzJoFkdAo8LmGyon8nV9lChoBmgJaA9DCMDMd/ATh/q/lIaUUpRoFUsyaBZHQKPCplnRLK51fZQoaAZoCWgPQwjdek0PCgr6v5SGlFKUaBVLMmgWR0CjwmS8J2MbdX2UKGgGaAloD0MI2T9PAwaJ97+UhpRSlGgVSzJoFkdAo8Iow22oenV9lChoBmgJaA9DCMtN1NLcivS/lIaUUpRoFUsyaBZHQKPBx70Fr2x1fZQoaAZoCWgPQwjEmPT3Uvj7v5SGlFKUaBVLMmgWR0CjyaCsGPgfdX2UKGgGaAloD0MIQUrs2t7u/r+UhpRSlGgVSzJoFkdAo8ljeuV5bHV9lChoBmgJaA9DCH6qCg3EMu2/lIaUUpRoFUsyaBZHQKPJJxS5y2h1fZQoaAZoCWgPQwjle0YiNKIAwJSGlFKUaBVLMmgWR0CjyOi66J66dX2UKGgGaAloD0MIehfvx+03BMCUhpRSlGgVSzJoFkdAo8iqKk2xZHV9lChoBmgJaA9DCNy6m6c6BAPAlIaUUpRoFUsyaBZHQKPIbphWo3t1fZQoaAZoCWgPQwimQ6fn3djjv5SGlFKUaBVLMmgWR0CjyCXr2QGOdX2UKGgGaAloD0MIbcX+snvy47+UhpRSlGgVSzJoFkdAo8flMh5gPXV9lChoBmgJaA9DCIfD0sCP6u6/lIaUUpRoFUsyaBZHQKPHpqYZ2p11fZQoaAZoCWgPQwgjvhOzXkwAwJSGlFKUaBVLMmgWR0Cjx2oEbHZLdX2UKGgGaAloD0MIHF97ZklA8r+UhpRSlGgVSzJoFkdAo8csHt4RmXV9lChoBmgJaA9DCEBoPXyZKOm/lIaUUpRoFUsyaBZHQKPG7dAPd2x1fZQoaAZoCWgPQwieCyO9qN3rv5SGlFKUaBVLMmgWR0Cjxq4rz5GjdX2UKGgGaAloD0MI7uvAOSPK7L+UhpRSlGgVSzJoFkdAo8ZscENe+nV9lChoBmgJaA9DCLJoOjsZ3Pi/lIaUUpRoFUsyaBZHQKPGMGzKLbZ1fZQoaAZoCWgPQwj6mA8IdCbov5SGlFKUaBVLMmgWR0Cjxc9TP0I1dX2UKGgGaAloD0MImggbnl5p87+UhpRSlGgVSzJoFkdAo810CzTnaHV9lChoBmgJaA9DCB3Lu+oB8wbAlIaUUpRoFUsyaBZHQKPNNyhBZ6l1fZQoaAZoCWgPQwisNv+vOjICwJSGlFKUaBVLMmgWR0CjzPusDGLldX2UKGgGaAloD0MI2NXkKatp7r+UhpRSlGgVSzJoFkdAo8y+eQMhHXV9lChoBmgJaA9DCJAV/DbE+Oq/lIaUUpRoFUsyaBZHQKPMf8FY+0R1fZQoaAZoCWgPQwg9nStKCcHqv5SGlFKUaBVLMmgWR0CjzERKpT/AdX2UKGgGaAloD0MI1jVaDvRQ77+UhpRSlGgVSzJoFkdAo8v7lV94NnV9lChoBmgJaA9DCFEtIorJG9y/lIaUUpRoFUsyaBZHQKPLuuFpPAR1fZQoaAZoCWgPQwj3cwrys5Hwv5SGlFKUaBVLMmgWR0Cjy3xxcVxkdX2UKGgGaAloD0MIXvHUIw1u67+UhpRSlGgVSzJoFkdAo8s/24/eL3V9lChoBmgJaA9DCGk6OxkcJd6/lIaUUpRoFUsyaBZHQKPLAhePaL51fZQoaAZoCWgPQwiZ9WIoJxr8v5SGlFKUaBVLMmgWR0CjysPKuB+XdX2UKGgGaAloD0MIRDAOLh1z57+UhpRSlGgVSzJoFkdAo8qEIX0oSnV9lChoBmgJaA9DCKWGNgAbEOm/lIaUUpRoFUsyaBZHQKPKQpBHCoF1fZQoaAZoCWgPQwi5GtmVllH7v5SGlFKUaBVLMmgWR0CjygakZaV2dX2UKGgGaAloD0MI/dtlv+408b+UhpRSlGgVSzJoFkdAo8mld/rjYXV9lChoBmgJaA9DCPQyiuWW1vS/lIaUUpRoFUsyaBZHQKPRUpLEk0J1fZQoaAZoCWgPQwikVS3pKGcEwJSGlFKUaBVLMmgWR0Cj0RSfthNNdX2UKGgGaAloD0MIoblOIy0V+b+UhpRSlGgVSzJoFkdAo9DYOe8PF3V9lChoBmgJaA9DCPuT+NwJ9tm/lIaUUpRoFUsyaBZHQKPQmdVea8Z1fZQoaAZoCWgPQwjZlCu8y0X/v5SGlFKUaBVLMmgWR0Cj0FtGEwnIdX2UKGgGaAloD0MISbn7HB+t6r+UhpRSlGgVSzJoFkdAo9AfsC1Z1XV9lChoBmgJaA9DCGKiQQqeQuW/lIaUUpRoFUsyaBZHQKPP1wtrbg11fZQoaAZoCWgPQwi366UpApz3v5SGlFKUaBVLMmgWR0Cjz5Z88cMmdX2UKGgGaAloD0MIaNDQP8HF5b+UhpRSlGgVSzJoFkdAo89YFaB7NXV9lChoBmgJaA9DCDNPrimQ2dS/lIaUUpRoFUsyaBZHQKPPG+A3DN11fZQoaAZoCWgPQwhy4UBIFvD2v5SGlFKUaBVLMmgWR0Cjzt6CUX54dX2UKGgGaAloD0MI409UNqyp2L+UhpRSlGgVSzJoFkdAo86gkona4HV9lChoBmgJaA9DCKku4GWGDeC/lIaUUpRoFUsyaBZHQKPOYTyJ9Ap1fZQoaAZoCWgPQwgBGTp2UInev5SGlFKUaBVLMmgWR0Cjzh++M6zWdX2UKGgGaAloD0MICme3lsnw87+UhpRSlGgVSzJoFkdAo83jwrlNlHV9lChoBmgJaA9DCMsO8Q9b+uq/lIaUUpRoFUsyaBZHQKPNgrAgxJx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 16, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (284 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.83644210282946, "std_reward": 0.982251724901169, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-21T11:52:47.219880"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2178660a15aff099e6343d24cb3af4959b7c9a0dd6a5f00f49c60ebce2dcace2
3
+ size 2387