Text Generation
Transformers
GGUF
code
Eval Results
conversational
munish0838 commited on
Commit
59b8205
·
verified ·
1 Parent(s): 51554dc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +152 -0
README.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ base_model: bigcode/starcoder2-15b-instruct-v0.1
4
+ datasets:
5
+ - bigcode/self-oss-instruct-sc2-exec-filter-50k
6
+ license: bigcode-openrail-m
7
+ library_name: transformers
8
+ tags:
9
+ - code
10
+ model-index:
11
+ - name: starcoder2-15b-instruct-v0.1
12
+ results:
13
+ - task:
14
+ type: text-generation
15
+ dataset:
16
+ name: LiveCodeBench (code generation)
17
+ type: livecodebench-codegeneration
18
+ metrics:
19
+ - type: pass@1
20
+ value: 20.4
21
+ - task:
22
+ type: text-generation
23
+ dataset:
24
+ name: LiveCodeBench (self repair)
25
+ type: livecodebench-selfrepair
26
+ metrics:
27
+ - type: pass@1
28
+ value: 20.9
29
+ - task:
30
+ type: text-generation
31
+ dataset:
32
+ name: LiveCodeBench (test output prediction)
33
+ type: livecodebench-testoutputprediction
34
+ metrics:
35
+ - type: pass@1
36
+ value: 29.8
37
+ - task:
38
+ type: text-generation
39
+ dataset:
40
+ name: LiveCodeBench (code execution)
41
+ type: livecodebench-codeexecution
42
+ metrics:
43
+ - type: pass@1
44
+ value: 28.1
45
+ - task:
46
+ type: text-generation
47
+ dataset:
48
+ name: HumanEval
49
+ type: humaneval
50
+ metrics:
51
+ - type: pass@1
52
+ value: 72.6
53
+ - task:
54
+ type: text-generation
55
+ dataset:
56
+ name: HumanEval+
57
+ type: humanevalplus
58
+ metrics:
59
+ - type: pass@1
60
+ value: 63.4
61
+ - task:
62
+ type: text-generation
63
+ dataset:
64
+ name: MBPP
65
+ type: mbpp
66
+ metrics:
67
+ - type: pass@1
68
+ value: 75.2
69
+ - task:
70
+ type: text-generation
71
+ dataset:
72
+ name: MBPP+
73
+ type: mbppplus
74
+ metrics:
75
+ - type: pass@1
76
+ value: 61.2
77
+ - task:
78
+ type: text-generation
79
+ dataset:
80
+ name: DS-1000
81
+ type: ds-1000
82
+ metrics:
83
+ - type: pass@1
84
+ value: 40.6
85
+ ---
86
+
87
+ # StarCoder2-Instruct-GGUF
88
+
89
+ - This is quantized version of [bigcode/starcoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1) created using llama.cpp
90
+
91
+
92
+ ## Model Summary
93
+
94
+ We introduce StarCoder2-15B-Instruct-v0.1, the very first entirely self-aligned code Large Language Model (LLM) trained with a fully permissive and transparent pipeline. Our open-source pipeline uses StarCoder2-15B to generate thousands of instruction-response pairs, which are then used to fine-tune StarCoder-15B itself without any human annotations or distilled data from huge and proprietary LLMs.
95
+
96
+ - **Model:** [bigcode/starcoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-instruct-15b-v0.1)
97
+ - **Code:** [bigcode-project/starcoder2-self-align](https://github.com/bigcode-project/starcoder2-self-align)
98
+ - **Dataset:** [bigcode/self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k/)
99
+ - **Authors:**
100
+ [Yuxiang Wei](https://yuxiang.cs.illinois.edu),
101
+ [Federico Cassano](https://federico.codes/),
102
+ [Jiawei Liu](https://jw-liu.xyz),
103
+ [Yifeng Ding](https://yifeng-ding.com),
104
+ [Naman Jain](https://naman-ntc.github.io),
105
+ [Harm de Vries](https://www.harmdevries.com),
106
+ [Leandro von Werra](https://twitter.com/lvwerra),
107
+ [Arjun Guha](https://www.khoury.northeastern.edu/home/arjunguha/main/home/),
108
+ [Lingming Zhang](https://lingming.cs.illinois.edu).
109
+
110
+ ![self-alignment pipeline](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/method.png)
111
+
112
+ ## Use
113
+
114
+ ### Intended use
115
+
116
+ The model is designed to respond to **coding-related instructions in a single turn**. Instructions in other styles may result in less accurate responses.
117
+
118
+
119
+ ### Bias, Risks, and Limitations
120
+
121
+ StarCoder2-15B-Instruct-v0.1 is primarily finetuned for Python code generation tasks that can be verified through execution, which may lead to certain biases and limitations. For example, the model might not adhere strictly to instructions that dictate the output format. In these situations, it's beneficial to provide a **response prefix** or a **one-shot example** to steer the model’s output. Additionally, the model may have limitations with other programming languages and out-of-domain coding tasks.
122
+
123
+ The model also inherits the bias, risks, and limitations from its base StarCoder2-15B model. For more information, please refer to the [StarCoder2-15B model card](https://huggingface.co/bigcode/starcoder2-15b).
124
+
125
+ ## Evaluation on EvalPlus, LiveCodeBench, and DS-1000
126
+
127
+ ![EvalPlus](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/evalplus.png)
128
+
129
+ ![LiveCodeBench and DS-1000](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/lcb-ds1000.png)
130
+
131
+ ## Training Details
132
+
133
+ ### Hyperparameters
134
+
135
+ - **Optimizer:** Adafactor
136
+ - **Learning rate:** 1e-5
137
+ - **Epoch:** 4
138
+ - **Batch size:** 64
139
+ - **Warmup ratio:** 0.05
140
+ - **Scheduler:** Linear
141
+ - **Sequence length:** 1280
142
+ - **Dropout**: Not applied
143
+
144
+ ### Hardware
145
+
146
+ 1 x NVIDIA A100 80GB
147
+
148
+ ## Resources
149
+
150
+ - **Model:** [bigcode/starCoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-instruct-15b-v0.1)
151
+ - **Code:** [bigcode-project/starcoder2-self-align](https://github.com/bigcode-project/starcoder2-self-align)
152
+ - **Dataset:** [bigcode/self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k/)