arrivaldwis commited on
Commit
20b0e4f
·
verified ·
1 Parent(s): 4d6cae1

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - id
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:6198
10
+ - loss:CoSENTLoss
11
+ base_model: intfloat/multilingual-e5-base
12
+ datasets:
13
+ - Pustekhan-ITB/stsb-indo-edu
14
+ pipeline_tag: sentence-similarity
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - pearson_cosine
18
+ - spearman_cosine
19
+ model-index:
20
+ - name: SentenceTransformer based on intfloat/multilingual-e5-base
21
+ results:
22
+ - task:
23
+ type: semantic-similarity
24
+ name: Semantic Similarity
25
+ dataset:
26
+ name: stsb indo edu dev
27
+ type: stsb-indo-edu-dev
28
+ metrics:
29
+ - type: pearson_cosine
30
+ value: 0.1930033858243812
31
+ name: Pearson Cosine
32
+ - type: spearman_cosine
33
+ value: 0.17647076252403324
34
+ name: Spearman Cosine
35
+ - task:
36
+ type: semantic-similarity
37
+ name: Semantic Similarity
38
+ dataset:
39
+ name: stsb indo edu test
40
+ type: stsb-indo-edu-test
41
+ metrics:
42
+ - type: pearson_cosine
43
+ value: 0.15065000397563194
44
+ name: Pearson Cosine
45
+ - type: spearman_cosine
46
+ value: 0.1512326380689479
47
+ name: Spearman Cosine
48
+ ---
49
+
50
+ # SentenceTransformer based on intfloat/multilingual-e5-base
51
+
52
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the [stsb-indo-edu](https://huggingface.co/datasets/Pustekhan-ITB/stsb-indo-edu) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** Sentence Transformer
58
+ - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision 835193815a3936a24a0ee7dc9e3d48c1fbb19c55 -->
59
+ - **Maximum Sequence Length:** 512 tokens
60
+ - **Output Dimensionality:** 768 dimensions
61
+ - **Similarity Function:** Cosine Similarity
62
+ - **Training Dataset:**
63
+ - [stsb-indo-edu](https://huggingface.co/datasets/Pustekhan-ITB/stsb-indo-edu)
64
+ - **Language:** id
65
+ <!-- - **License:** Unknown -->
66
+
67
+ ### Model Sources
68
+
69
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
70
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
71
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
72
+
73
+ ### Full Model Architecture
74
+
75
+ ```
76
+ SentenceTransformer(
77
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
78
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
79
+ (2): Normalize()
80
+ )
81
+ ```
82
+
83
+ ## Usage
84
+
85
+ ### Direct Usage (Sentence Transformers)
86
+
87
+ First install the Sentence Transformers library:
88
+
89
+ ```bash
90
+ pip install -U sentence-transformers
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+ ```python
95
+ from sentence_transformers import SentenceTransformer
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SentenceTransformer("Pustekhan-ITB/indoedu-e5-base")
99
+ # Run inference
100
+ sentences = [
101
+ 'The weather is lovely today.',
102
+ "It's so sunny outside!",
103
+ 'He drove to the stadium.',
104
+ ]
105
+ embeddings = model.encode(sentences)
106
+ print(embeddings.shape)
107
+ # [3, 768]
108
+
109
+ # Get the similarity scores for the embeddings
110
+ similarities = model.similarity(embeddings, embeddings)
111
+ print(similarities.shape)
112
+ # [3, 3]
113
+ ```
114
+
115
+ <!--
116
+ ### Direct Usage (Transformers)
117
+
118
+ <details><summary>Click to see the direct usage in Transformers</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Downstream Usage (Sentence Transformers)
125
+
126
+ You can finetune this model on your own dataset.
127
+
128
+ <details><summary>Click to expand</summary>
129
+
130
+ </details>
131
+ -->
132
+
133
+ <!--
134
+ ### Out-of-Scope Use
135
+
136
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
137
+ -->
138
+
139
+ ## Evaluation
140
+
141
+ ### Metrics
142
+
143
+ #### Semantic Similarity
144
+
145
+ * Datasets: `stsb-indo-edu-dev` and `stsb-indo-edu-test`
146
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
147
+
148
+ | Metric | stsb-indo-edu-dev | stsb-indo-edu-test |
149
+ |:--------------------|:------------------|:-------------------|
150
+ | pearson_cosine | 0.193 | 0.1507 |
151
+ | **spearman_cosine** | **0.1765** | **0.1512** |
152
+
153
+ <!--
154
+ ## Bias, Risks and Limitations
155
+
156
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
157
+ -->
158
+
159
+ <!--
160
+ ### Recommendations
161
+
162
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
163
+ -->
164
+
165
+ ## Training Details
166
+
167
+ ### Training Dataset
168
+
169
+ #### stsb-indo-edu
170
+
171
+ * Dataset: [stsb-indo-edu](https://huggingface.co/datasets/Pustekhan-ITB/stsb-indo-edu) at [f84d4d6](https://huggingface.co/datasets/Pustekhan-ITB/stsb-indo-edu/tree/f84d4d6eaca768507bd0f298aef6f3f1a98ddefc)
172
+ * Size: 6,198 training samples
173
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
174
+ * Approximate statistics based on the first 1000 samples:
175
+ | | sentence1 | sentence2 | score |
176
+ |:--------|:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
177
+ | type | list | list | float |
178
+ | details | <ul><li>min: 18 elements</li><li>mean: 58.40 elements</li><li>max: 137 elements</li></ul> | <ul><li>min: 15 elements</li><li>mean: 54.31 elements</li><li>max: 118 elements</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.46</li><li>max: 1.0</li></ul> |
179
+ * Samples:
180
+ | sentence1 | sentence2 | score |
181
+ |:-------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:------------------|
182
+ | <code>['query: P', 'query: e', 'query: l', 'query: a', 'query: j', ...]</code> | <code>['passage: T', 'passage: a', 'passage: r', 'passage: i', 'passage: a', ...]</code> | <code>0.76</code> |
183
+ | <code>['query: S', 'query: e', 'query: b', 'query: e', 'query: l', ...]</code> | <code>['passage: U', 'passage: p', 'passage: a', 'passage: y', 'passage: a', ...]</code> | <code>0.85</code> |
184
+ | <code>['query: B', 'query: e', 'query: b', 'query: e', 'query: r', ...]</code> | <code>['passage: I', 'passage: n', 'passage: i', 'passage: ', 'passage: m', ...]</code> | <code>0.63</code> |
185
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
186
+ ```json
187
+ {
188
+ "scale": 20.0,
189
+ "similarity_fct": "pairwise_cos_sim"
190
+ }
191
+ ```
192
+
193
+ ### Evaluation Dataset
194
+
195
+ #### stsb-indo-edu
196
+
197
+ * Dataset: [stsb-indo-edu](https://huggingface.co/datasets/Pustekhan-ITB/stsb-indo-edu) at [f84d4d6](https://huggingface.co/datasets/Pustekhan-ITB/stsb-indo-edu/tree/f84d4d6eaca768507bd0f298aef6f3f1a98ddefc)
198
+ * Size: 1,536 evaluation samples
199
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
200
+ * Approximate statistics based on the first 1000 samples:
201
+ | | sentence1 | sentence2 | score |
202
+ |:--------|:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
203
+ | type | list | list | float |
204
+ | details | <ul><li>min: 14 elements</li><li>mean: 86.67 elements</li><li>max: 172 elements</li></ul> | <ul><li>min: 22 elements</li><li>mean: 88.94 elements</li><li>max: 177 elements</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
205
+ * Samples:
206
+ | sentence1 | sentence2 | score |
207
+ |:-------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:------------------|
208
+ | <code>['query: S', 'query: e', 'query: o', 'query: r', 'query: a', ...]</code> | <code>['passage: S', 'passage: e', 'passage: o', 'passage: r', 'passage: a', ...]</code> | <code>1.0</code> |
209
+ | <code>['query: S', 'query: e', 'query: o', 'query: r', 'query: a', ...]</code> | <code>['passage: S', 'passage: e', 'passage: o', 'passage: r', 'passage: a', ...]</code> | <code>0.95</code> |
210
+ | <code>['query: S', 'query: e', 'query: o', 'query: r', 'query: a', ...]</code> | <code>['passage: P', 'passage: r', 'passage: i', 'passage: a', 'passage: ', ...]</code> | <code>1.0</code> |
211
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
212
+ ```json
213
+ {
214
+ "scale": 20.0,
215
+ "similarity_fct": "pairwise_cos_sim"
216
+ }
217
+ ```
218
+
219
+ ### Training Hyperparameters
220
+ #### Non-Default Hyperparameters
221
+
222
+ - `eval_strategy`: steps
223
+ - `per_device_train_batch_size`: 32
224
+ - `per_device_eval_batch_size`: 16
225
+ - `learning_rate`: 1e-05
226
+ - `weight_decay`: 0.01
227
+ - `num_train_epochs`: 5
228
+ - `warmup_ratio`: 0.1
229
+ - `fp16`: True
230
+
231
+ #### All Hyperparameters
232
+ <details><summary>Click to expand</summary>
233
+
234
+ - `overwrite_output_dir`: False
235
+ - `do_predict`: False
236
+ - `eval_strategy`: steps
237
+ - `prediction_loss_only`: True
238
+ - `per_device_train_batch_size`: 32
239
+ - `per_device_eval_batch_size`: 16
240
+ - `per_gpu_train_batch_size`: None
241
+ - `per_gpu_eval_batch_size`: None
242
+ - `gradient_accumulation_steps`: 1
243
+ - `eval_accumulation_steps`: None
244
+ - `torch_empty_cache_steps`: None
245
+ - `learning_rate`: 1e-05
246
+ - `weight_decay`: 0.01
247
+ - `adam_beta1`: 0.9
248
+ - `adam_beta2`: 0.999
249
+ - `adam_epsilon`: 1e-08
250
+ - `max_grad_norm`: 1.0
251
+ - `num_train_epochs`: 5
252
+ - `max_steps`: -1
253
+ - `lr_scheduler_type`: linear
254
+ - `lr_scheduler_kwargs`: {}
255
+ - `warmup_ratio`: 0.1
256
+ - `warmup_steps`: 0
257
+ - `log_level`: passive
258
+ - `log_level_replica`: warning
259
+ - `log_on_each_node`: True
260
+ - `logging_nan_inf_filter`: True
261
+ - `save_safetensors`: True
262
+ - `save_on_each_node`: False
263
+ - `save_only_model`: False
264
+ - `restore_callback_states_from_checkpoint`: False
265
+ - `no_cuda`: False
266
+ - `use_cpu`: False
267
+ - `use_mps_device`: False
268
+ - `seed`: 42
269
+ - `data_seed`: None
270
+ - `jit_mode_eval`: False
271
+ - `use_ipex`: False
272
+ - `bf16`: False
273
+ - `fp16`: True
274
+ - `fp16_opt_level`: O1
275
+ - `half_precision_backend`: auto
276
+ - `bf16_full_eval`: False
277
+ - `fp16_full_eval`: False
278
+ - `tf32`: None
279
+ - `local_rank`: 0
280
+ - `ddp_backend`: None
281
+ - `tpu_num_cores`: None
282
+ - `tpu_metrics_debug`: False
283
+ - `debug`: []
284
+ - `dataloader_drop_last`: False
285
+ - `dataloader_num_workers`: 0
286
+ - `dataloader_prefetch_factor`: None
287
+ - `past_index`: -1
288
+ - `disable_tqdm`: False
289
+ - `remove_unused_columns`: True
290
+ - `label_names`: None
291
+ - `load_best_model_at_end`: False
292
+ - `ignore_data_skip`: False
293
+ - `fsdp`: []
294
+ - `fsdp_min_num_params`: 0
295
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
296
+ - `fsdp_transformer_layer_cls_to_wrap`: None
297
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
298
+ - `deepspeed`: None
299
+ - `label_smoothing_factor`: 0.0
300
+ - `optim`: adamw_torch
301
+ - `optim_args`: None
302
+ - `adafactor`: False
303
+ - `group_by_length`: False
304
+ - `length_column_name`: length
305
+ - `ddp_find_unused_parameters`: None
306
+ - `ddp_bucket_cap_mb`: None
307
+ - `ddp_broadcast_buffers`: False
308
+ - `dataloader_pin_memory`: True
309
+ - `dataloader_persistent_workers`: False
310
+ - `skip_memory_metrics`: True
311
+ - `use_legacy_prediction_loop`: False
312
+ - `push_to_hub`: False
313
+ - `resume_from_checkpoint`: None
314
+ - `hub_model_id`: None
315
+ - `hub_strategy`: every_save
316
+ - `hub_private_repo`: None
317
+ - `hub_always_push`: False
318
+ - `gradient_checkpointing`: False
319
+ - `gradient_checkpointing_kwargs`: None
320
+ - `include_inputs_for_metrics`: False
321
+ - `include_for_metrics`: []
322
+ - `eval_do_concat_batches`: True
323
+ - `fp16_backend`: auto
324
+ - `push_to_hub_model_id`: None
325
+ - `push_to_hub_organization`: None
326
+ - `mp_parameters`:
327
+ - `auto_find_batch_size`: False
328
+ - `full_determinism`: False
329
+ - `torchdynamo`: None
330
+ - `ray_scope`: last
331
+ - `ddp_timeout`: 1800
332
+ - `torch_compile`: False
333
+ - `torch_compile_backend`: None
334
+ - `torch_compile_mode`: None
335
+ - `dispatch_batches`: None
336
+ - `split_batches`: None
337
+ - `include_tokens_per_second`: False
338
+ - `include_num_input_tokens_seen`: False
339
+ - `neftune_noise_alpha`: None
340
+ - `optim_target_modules`: None
341
+ - `batch_eval_metrics`: False
342
+ - `eval_on_start`: False
343
+ - `use_liger_kernel`: False
344
+ - `eval_use_gather_object`: False
345
+ - `average_tokens_across_devices`: False
346
+ - `prompts`: None
347
+ - `batch_sampler`: batch_sampler
348
+ - `multi_dataset_batch_sampler`: proportional
349
+
350
+ </details>
351
+
352
+ ### Training Logs
353
+ | Epoch | Step | Training Loss | Validation Loss | stsb-indo-edu-dev_spearman_cosine | stsb-indo-edu-test_spearman_cosine |
354
+ |:------:|:----:|:-------------:|:---------------:|:---------------------------------:|:----------------------------------:|
355
+ | -1 | -1 | - | - | 0.0995 | - |
356
+ | 0.5155 | 100 | 6.2244 | 4.7594 | 0.1027 | - |
357
+ | 1.0309 | 200 | 6.1605 | 4.7518 | 0.1502 | - |
358
+ | 1.5464 | 300 | 6.16 | 4.7553 | 0.1564 | - |
359
+ | 2.0619 | 400 | 6.1609 | 4.7527 | 0.1714 | - |
360
+ | 2.5773 | 500 | 6.1593 | 4.7698 | 0.1495 | - |
361
+ | 3.0928 | 600 | 6.1517 | 4.7516 | 0.1657 | - |
362
+ | 3.6082 | 700 | 6.1555 | 4.7463 | 0.1787 | - |
363
+ | 4.1237 | 800 | 6.1452 | 4.7548 | 0.1665 | - |
364
+ | 4.6392 | 900 | 6.1523 | 4.7494 | 0.1765 | - |
365
+ | -1 | -1 | - | - | - | 0.1512 |
366
+
367
+
368
+ ### Framework Versions
369
+ - Python: 3.11.11
370
+ - Sentence Transformers: 3.4.1
371
+ - Transformers: 4.48.3
372
+ - PyTorch: 2.5.1+cu124
373
+ - Accelerate: 1.3.0
374
+ - Datasets: 3.3.2
375
+ - Tokenizers: 0.21.0
376
+
377
+ ## Citation
378
+
379
+ ### BibTeX
380
+
381
+ #### Sentence Transformers
382
+ ```bibtex
383
+ @inproceedings{reimers-2019-sentence-bert,
384
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
385
+ author = "Reimers, Nils and Gurevych, Iryna",
386
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
387
+ month = "11",
388
+ year = "2019",
389
+ publisher = "Association for Computational Linguistics",
390
+ url = "https://arxiv.org/abs/1908.10084",
391
+ }
392
+ ```
393
+
394
+ #### CoSENTLoss
395
+ ```bibtex
396
+ @online{kexuefm-8847,
397
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
398
+ author={Su Jianlin},
399
+ year={2022},
400
+ month={Jan},
401
+ url={https://kexue.fm/archives/8847},
402
+ }
403
+ ```
404
+
405
+ <!--
406
+ ## Glossary
407
+
408
+ *Clearly define terms in order to be accessible across audiences.*
409
+ -->
410
+
411
+ <!--
412
+ ## Model Card Authors
413
+
414
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
415
+ -->
416
+
417
+ <!--
418
+ ## Model Card Contact
419
+
420
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
421
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.3",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e800541c2b25e35f1fdeb9e3d244a52a0ebe55dae7b0e89e525308d18b9c1777
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }