File size: 17,111 Bytes
4395cf9
 
 
 
 
 
 
 
 
 
 
ea46d13
4395cf9
5324bdd
 
4395cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea46d13
 
 
4395cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea46d13
 
 
 
 
 
 
4395cf9
ea46d13
 
 
 
 
 
 
 
 
4395cf9
ea46d13
 
 
 
 
 
 
 
 
 
4395cf9
 
ea46d13
 
 
 
4395cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea46d13
 
 
 
 
4395cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea46d13
4395cf9
 
 
 
 
 
 
 
 
 
 
ea46d13
 
 
 
 
5324bdd
4395cf9
 
5324bdd
 
 
 
 
 
 
 
 
 
 
 
4395cf9
5324bdd
 
 
4395cf9
5324bdd
 
 
 
 
 
 
 
4395cf9
5324bdd
4395cf9
 
5324bdd
 
4395cf9
5324bdd
4395cf9
 
5324bdd
 
 
 
 
 
 
 
 
 
4395cf9
5324bdd
 
 
 
 
4395cf9
 
 
 
 
ea46d13
 
 
5324bdd
 
4395cf9
 
5324bdd
 
 
4395cf9
 
5324bdd
4395cf9
5324bdd
 
 
 
 
4395cf9
 
 
5324bdd
4395cf9
5324bdd
4395cf9
 
5324bdd
 
4395cf9
 
5324bdd
 
4395cf9
 
5324bdd
 
 
 
 
 
4395cf9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import (
    PretrainedConfig,
    PreTrainedModel,
    AutoConfig, 
    AutoModel, 
    AutoModelForCausalLM
)
from transformers.modeling_outputs import CausalLMOutput

from typing import Optional

class ArgonneConfig(PretrainedConfig):
    model_type = "argonne"
    def __init__(self, vocab_size=12000, block_size=2048, n_layer=24, n_head=24, n_embd=1296, dropout=0.1, use_flash_attn=True, **kwargs):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.block_size = block_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_embd = n_embd
        self.dropout = dropout
        self.use_flash_attn = use_flash_attn

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)
    def forward(self, x):
        x = x + self.attn(self.ln1(x))
        x = x + self.mlp(self.ln2(x))
        return x

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0, "Embedding dim must be divisible by n_head"
        self.n_head = config.n_head
        self.head_dim = config.n_embd // config.n_head
        self.query = nn.Linear(config.n_embd, config.n_embd)
        self.key = nn.Linear(config.n_embd, config.n_embd)
        self.value = nn.Linear(config.n_embd, config.n_embd)
        self.attn_drop = nn.Dropout(config.dropout)
        self.resid_drop = nn.Dropout(config.dropout)
        self.proj = nn.Linear(config.n_embd, config.n_embd)
        self.use_flash_attn = getattr(config, 'use_flash_attn', True)
        
        # Register the causal mask for the traditional attention path
        self.register_buffer(
            "mask",
            torch.tril(torch.ones(config.block_size, config.block_size))
                 .view(1, 1, config.block_size, config.block_size)
        )

    def forward(self, x):
        b, t, c = x.size()
        q = self.query(x).view(b, t, self.n_head, self.head_dim).transpose(1, 2)
        k = self.key(x).view(b, t, self.n_head, self.head_dim).transpose(1, 2)
        v = self.value(x).view(b, t, self.n_head, self.head_dim).transpose(1, 2)

        if hasattr(F, 'scaled_dot_product_attention') and self.use_flash_attn:
            # When using is_causal=True, don't provide an attention mask
            attn_output = F.scaled_dot_product_attention(
                q, k, v,
                dropout_p=self.attn_drop.p if self.training else 0.0,
                is_causal=True  # Let PyTorch handle the causal mask internally
            )
            attn_output = attn_output.transpose(1, 2).contiguous().view(b, t, c)
            y = self.resid_drop(self.proj(attn_output))
            return y
        else:
            # Original attention implementation (fallback)
            att = (q @ k.transpose(-2, -1)) / math.sqrt(self.head_dim)
            att = att.masked_fill(self.mask[:, :, :t, :t] == 0, float('-inf'))
            att = torch.softmax(att, dim=-1)
            att = self.attn_drop(att)
            y = att @ v
            y = y.transpose(1, 2).contiguous().view(b, t, c)
            y = self.resid_drop(self.proj(y))
            return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.fc1 = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.act = nn.GELU()
        self.fc2 = nn.Linear(4 * config.n_embd, config.n_embd)
        self.drop = nn.Dropout(config.dropout)
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class ArgonneModel(PreTrainedModel):
    config_class = ArgonneConfig

    # for map_device = "auto"
    _no_split_modules = ["Block"]

    def __init__(self, config, device_map=None):
        super().__init__(config)
        # Create embeddings on CPU initially
        self.token_embedding = nn.Embedding(config.vocab_size, config.n_embd)
        self.position_embedding = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
        self.drop = nn.Dropout(config.dropout)

        # Build all blocks
        self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)])

        # Final LayerNorm + output head
        self.ln_f = nn.LayerNorm(config.n_embd)
        self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        nn.init.normal_(self.position_embedding, mean=0.0, std=0.02)
        self.post_init()

        # For pipeline parallelism
        self.pipeline_stages = None
        self.devices = []
        
        # Handle device_map="auto" for inference
        if device_map is not None:
            self.setup_device_map(device_map)

    def setup_device_map(self, device_map):
        """
        Set up the model on devices according to device_map.
        If device_map="auto", use accelerate to automatically assign model parts to devices.
        """
        if device_map == "auto":
            try:
                from accelerate import dispatch_model
                from accelerate.utils import infer_auto_device_map
                
                # Get device map automatically
                auto_device_map = infer_auto_device_map(self)
                # Dispatch model across devices
                dispatch_model(self, device_map=auto_device_map)
                
                print(f"Model automatically distributed across devices with device_map: {auto_device_map}")
                
            except ImportError:
                print("The 'accelerate' library is required for device_map='auto'. Please install it with 'pip install accelerate'.")
                print("Continuing with model on CPU or default device.")
        else:
            # Handle custom device map
            # This would be a more complex implementation where the user provides a specific mapping
            # of model components to devices
            pass

    def distribute_model(self, device_ids=None):
        """
        Distribute the model blocks across multiple GPU devices in a pipeline style.
        If 'device_ids' is None, we'll discover all available GPUs.
        """
        if device_ids is None:
            num_gpus = torch.cuda.device_count()
            if num_gpus < 1:
                raise ValueError("No GPUs found—can't do pipeline parallel on CPU only.")
            device_ids = [f"cuda:{i}" for i in range(num_gpus)]
        
        # Store them so the training loop can keep referencing model.devices
        self.devices = [torch.device(d) for d in device_ids]

        self.pipeline_stages = nn.ModuleList()
        num_gpus = len(device_ids)
        blocks_per_gpu = math.ceil(len(self.blocks) / num_gpus)

        start_idx = 0
        for i in range(num_gpus):
            end_idx = min(start_idx + blocks_per_gpu, len(self.blocks))
            stage_blocks = self.blocks[start_idx:end_idx]
            stage = nn.Sequential(*stage_blocks).to(device_ids[i])
            self.pipeline_stages.append(stage)
            start_idx = end_idx
            if end_idx >= len(self.blocks):
                break

        # Move embeddings to the first device
        first_device = device_ids[0]
        self.token_embedding = self.token_embedding.to(first_device)
        # For nn.Parameter, we need to move the data, not replace the parameter
        self.position_embedding.data = self.position_embedding.data.to(first_device)
        self.drop = self.drop.to(first_device)

        # Move final LayerNorm + head to the last device
        last_device = device_ids[-1]
        self.ln_f = self.ln_f.to(last_device)
        self.head = self.head.to(last_device)

        print(f"Model distributed across {len(device_ids)} devices")
        print(f"First device: {first_device}, Last device: {last_device}")
        print(f"Transformer layers per device: ~{blocks_per_gpu}")

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def prepare_for_compile(self):
        """
        Prepare model for torch.compile() by ensuring all components
        are compatible with the compiler.
        """
        # Some models may need special handling for compilation
        # For now, we'll just return self since our model structure should be compatible
        return self

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        labels=None,
        **kwargs
    ):
        """
        HF-friendly forward method.

        Args:
            input_ids (torch.LongTensor): Tokens to be fed to the model. [batch_size, seq_len].
            attention_mask (torch.LongTensor, optional): Mask of shape [batch_size, seq_len],
                with 1 for actual tokens and 0 for padding, if you want to incorporate it. 
                Currently ignored in this minimal example.
            labels (torch.LongTensor, optional): Targets for language modeling, same shape as `input_ids`.
            **kwargs: Catch-all for any additional arguments (e.g. past_key_values) so we don't crash.
        """
        # 1) We'll rename the parameters from the old code
        if input_ids is None:
            raise ValueError("`input_ids` must be provided.")

        # We used to call it 'idx'
        idx = input_ids
        # We used to call it 'targets'
        targets = labels

        # [Optional] If we want to handle single-dim input_ids
        if idx.dim() == 1:
            idx = idx.unsqueeze(0)

        # 2) Now the rest of your old forward logic remains, just replacing references
        #    to "idx" and "targets" with these new variables.

        if self.pipeline_stages is None:
            # Single-device forward pass
            device = self.token_embedding.weight.device
            idx = idx.to(device)
            b, t = idx.size()
            assert t <= self.config.block_size, "Sequence length exceeds block size"

            token_embeddings = self.token_embedding(idx)
            position_embeddings = self.position_embedding[:, :t, :]
            hidden_states = self.drop(token_embeddings + position_embeddings)

            for block in self.blocks:
                hidden_states = block(hidden_states)

            hidden_states = self.ln_f(hidden_states)
            logits = self.head(hidden_states)

            loss = None
            if targets is not None:
                targets = targets.to(device)
                logits = logits.view(-1, logits.size(-1))
                targets = targets.view(-1)
                loss = F.cross_entropy(logits, targets)

            return CausalLMOutput(
                loss=loss,
                logits=logits,
                )

        else:
            # Pipeline parallel forward
            first_device = next(self.token_embedding.parameters()).device
            last_device = next(self.ln_f.parameters()).device

            x = idx.to(first_device)
            b, t = x.size()
            assert t <= self.config.block_size, "Sequence length exceeds block size"

            token_embeddings = self.token_embedding(x)
            position_embeddings = self.position_embedding[:, :t, :]
            hidden_states = self.drop(token_embeddings + position_embeddings)

            # Pass through each pipeline stage in sequence
            for stage_idx, stage in enumerate(self.pipeline_stages):
                device_stage = next(stage.parameters()).device
                hidden_states = hidden_states.to(device_stage)
                hidden_states = stage(hidden_states)

            # Move to last device before final ops
            hidden_states = hidden_states.to(last_device)
            hidden_states = self.ln_f(hidden_states)
            logits = self.head(hidden_states)

            loss = None
            if targets is not None:
                targets = targets.to(last_device)
                logits = logits.view(-1, logits.size(-1))
                targets = targets.view(-1)
                loss = F.cross_entropy(logits, targets)

            return CausalLMOutput(
                loss=loss,
                logits=logits,
                )

    

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.Tensor] = None,
        max_length: int = 50,            # Standard HF param
        do_sample: bool = True,          # Replaces "sample=True/False"
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        temperature: float = 0.7,
        attention_mask: Optional[torch.Tensor] = None,
        # Catch-all for additional HF params (e.g. num_beams) so it doesn't crash:
        **kwargs
    ):
        """
        A bridging generate method that accepts common HF arguments
        but uses your custom GPT-style generation loop.

        Args:
            input_ids (Tensor): Starting prompt tokens [batch_size, seq_len].
            max_length (int): The total length of the final sequence (seq_len + new tokens).
            do_sample (bool): If True, sample from distribution; if False, do greedy.
            top_k (int): Top-k filtering threshold.
            top_p (float): Nucleus sampling threshold.
            temperature (float): Sampling temperature.
            attention_mask (Tensor): If you want to handle padding (unused in this minimal example).
            **kwargs: Ignored extra arguments (e.g. num_beams) so they don't cause an error.
        Returns:
            Tensor of shape [batch_size, total_seq_len] with the generated tokens.
        """
        self.eval()

        # 1) Figure out device
        if self.pipeline_stages is not None and len(self.devices) > 0:
            device = self.devices[0]
        else:
            device = next(self.parameters()).device

        # 2) Sanity checks
        if input_ids is None:
            raise ValueError("`input_ids` must be provided for generation.")

        batch_size, current_length = input_ids.shape
        if current_length >= max_length:
            raise ValueError(f"Current sequence length {current_length} >= max_length={max_length}")

        # 3) Move to the correct device
        generated = input_ids.to(device)

        # We'll generate new tokens until length == max_length
        total_new_tokens = max_length - current_length

        for _ in range(total_new_tokens):
            # Truncate if necessary to fit within the model's context window
            if generated.shape[1] > self.config.block_size:
                generated = generated[:, -self.config.block_size:]

            # Forward pass
            outputs = self.forward(generated)
            logits = outputs.logits            # outputs is a CausalLMOutput
            logits = logits[:, -1, :]          # get the last token's logits

            # Temperature
            if temperature != 1.0:
                logits = logits / temperature

            # Greedy decode if do_sample=False
            if not do_sample:
                next_token = torch.argmax(logits, dim=-1, keepdim=True)
            else:
                # top-k filtering
                if top_k is not None:
                    threshold = torch.topk(logits, top_k)[0][..., -1, None]
                    filter_mask = logits < threshold
                    logits = logits.masked_fill(filter_mask, float('-inf'))

                # top-p (nucleus) filtering
                if top_p is not None:
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

                    sorted_indices_to_remove = cumulative_probs > top_p
                    # shift right to retain the first token above threshold
                    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                    sorted_indices_to_remove[..., 0] = 0

                    filter_mask = sorted_indices_to_remove.scatter(
                        dim=1, index=sorted_indices, src=sorted_indices_to_remove
                    )
                    logits = logits.masked_fill(filter_mask, float('-inf'))

                probs = F.softmax(logits, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1)

            # Append new token
            generated = torch.cat([generated, next_token.to(device)], dim=1)

        return generated

# Register the model with Hugging Face's Auto classes
AutoConfig.register("argonne", ArgonneConfig)
AutoModel.register(ArgonneConfig, ArgonneModel)
AutoModelForCausalLM.register(ArgonneConfig, ArgonneModel)