Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,173 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- fr
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- t5
|
8 |
+
- commonvoice
|
9 |
+
- pytorch
|
10 |
+
- pictograms
|
11 |
+
- translation
|
12 |
+
metrics:
|
13 |
+
- bleu
|
14 |
+
widget:
|
15 |
+
- text: "je mange une pomme"
|
16 |
+
example_title: "A simple sentence"
|
17 |
+
- text: "je ne pense pas à toi"
|
18 |
+
example_title: "Sentence with a negation"
|
19 |
+
- text: "il y a 2 jours, les gendarmes ont vérifié ma licence"
|
20 |
+
example_title: "Sentence with a polylexical term"
|
21 |
+
---
|
22 |
+
|
23 |
+
# t2p-t5-large-commonvoice
|
24 |
+
|
25 |
+
*t2p-t5-large-commonvoice* is a text-to-pictograms translation model built by fine-tuning the [t5-large](https://huggingface.co/google-t5/t5-large) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)).
|
26 |
+
The model is used only for **inference**.
|
27 |
+
|
28 |
+
## Training details
|
29 |
+
|
30 |
+
### Datasets
|
31 |
+
|
32 |
+
The [Propicto-commonvoice dataset](https://www.ortolang.fr/market/corpora/propicto) is used, which was created from the CommmonVoice v.15.0 corpus.
|
33 |
+
This dataset was built with the method presented in the research paper titled ["A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation](https://aclanthology.org/2024.lrec-main.76/)" at LREC-Coling 2024. The dataset was split into training, validation, and test sets.
|
34 |
+
| **Split** | **Number of utterances** |
|
35 |
+
|:-----------:|:-----------------------:|
|
36 |
+
| train | 527,390 |
|
37 |
+
| valid | 16,124 |
|
38 |
+
| test | 16,120 |
|
39 |
+
|
40 |
+
### Parameters
|
41 |
+
|
42 |
+
A full list of the parameters is available in the config.json file. This is the arguments in the training pipeline :
|
43 |
+
|
44 |
+
```python
|
45 |
+
training_args = Seq2SeqTrainingArguments(
|
46 |
+
output_dir="checkpoints_commonvoice/",
|
47 |
+
evaluation_strategy="epoch",
|
48 |
+
save_strategy="epoch",
|
49 |
+
learning_rate=2e-5,
|
50 |
+
per_device_train_batch_size=32,
|
51 |
+
per_device_eval_batch_size=32,
|
52 |
+
weight_decay=0.01,
|
53 |
+
save_total_limit=3,
|
54 |
+
num_train_epochs=40,
|
55 |
+
predict_with_generate=True,
|
56 |
+
fp16=True,
|
57 |
+
load_best_model_at_end=True
|
58 |
+
)
|
59 |
+
```
|
60 |
+
|
61 |
+
### Evaluation
|
62 |
+
|
63 |
+
The model was evaluated with [sacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu/blob/d94719691d29f7adf7151c8b1471de579a78a280/sacrebleu.py), where we compared the reference pictogram translation with the model hypothesis.
|
64 |
+
|
65 |
+
### Results
|
66 |
+
|
67 |
+
Comparison to other translation models :
|
68 |
+
| **Model** | **validation** | **test** |
|
69 |
+
|:-----------:|:-----------------------:|:-----------------------:|
|
70 |
+
| **t2p-t5-large-commonvoice** | 86.3 | 86.5 |
|
71 |
+
| t2p-nmt-commonvoice | 86.0 | 82.6 |
|
72 |
+
| t2p-mbart-large-cc25-commonvoice | 72.3 | 72.3 |
|
73 |
+
| t2p-nllb-200-distilled-600M-commonvoice | **87.4** | **87.6** |
|
74 |
+
|
75 |
+
### Environmental Impact
|
76 |
+
|
77 |
+
Fine-tuning was performed using a single Nvidia V100 GPU with 32 GB of memory which took around 30 hours in total.
|
78 |
+
|
79 |
+
## Using t2p-t5-large-orféo model with HuggingFace transformers
|
80 |
+
|
81 |
+
```python
|
82 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
83 |
+
|
84 |
+
source_lang = "fr"
|
85 |
+
target_lang = "frp"
|
86 |
+
max_input_length = 128
|
87 |
+
max_target_length = 128
|
88 |
+
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained("Propicto/t2p-t5-large-commonvoice")
|
90 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Propicto/t2p-t5-large-commonvoice")
|
91 |
+
|
92 |
+
inputs = tokenizer("Je mange une pomme", return_tensors="pt").input_ids
|
93 |
+
outputs = model.generate(inputs.to("cuda:0"), max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
|
94 |
+
pred = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
95 |
+
```
|
96 |
+
|
97 |
+
## Linking the predicted sequence of tokens to the corresponding ARASAAC pictograms
|
98 |
+
|
99 |
+
```python
|
100 |
+
import pandas as pd
|
101 |
+
|
102 |
+
def process_output_trad(pred):
|
103 |
+
return pred.split()
|
104 |
+
|
105 |
+
def read_lexicon(lexicon):
|
106 |
+
df = pd.read_csv(lexicon, sep='\t')
|
107 |
+
df['keyword_no_cat'] = df['lemma'].str.split(' #').str[0].str.strip().str.replace(' ', '_')
|
108 |
+
return df
|
109 |
+
|
110 |
+
def get_id_picto_from_predicted_lemma(df_lexicon, lemma):
|
111 |
+
id_picto = df_lexicon.loc[df_lexicon['keyword_no_cat'] == lemma, 'id_picto'].tolist()
|
112 |
+
return (id_picto[0], lemma) if id_picto else (0, lemma)
|
113 |
+
|
114 |
+
lexicon = read_lexicon("lexicon.csv")
|
115 |
+
sentence_to_map = process_output_trad(pred)
|
116 |
+
pictogram_ids = [get_id_picto_from_predicted_lemma(lexicon, lemma) for lemma in sentence_to_map]
|
117 |
+
```
|
118 |
+
|
119 |
+
## Viewing the predicted sequence of ARASAAC pictograms in a HTML file
|
120 |
+
|
121 |
+
```python
|
122 |
+
def generate_html(ids):
|
123 |
+
html_content = '<html><body>'
|
124 |
+
for picto_id, lemma in ids:
|
125 |
+
if picto_id != 0: # ignore invalid IDs
|
126 |
+
img_url = f"https://static.arasaac.org/pictograms/{picto_id}/{picto_id}_500.png"
|
127 |
+
html_content += f'''
|
128 |
+
<figure style="display:inline-block; margin:1px;">
|
129 |
+
<img src="{img_url}" alt="{lemma}" width="200" height="200" />
|
130 |
+
<figcaption>{lemma}</figcaption>
|
131 |
+
</figure>
|
132 |
+
'''
|
133 |
+
html_content += '</body></html>'
|
134 |
+
return html_content
|
135 |
+
|
136 |
+
html = generate_html(pictogram_ids)
|
137 |
+
with open("pictograms.html", "w") as file:
|
138 |
+
file.write(html)
|
139 |
+
```
|
140 |
+
|
141 |
+
## Information
|
142 |
+
|
143 |
+
- **Language(s):** French
|
144 |
+
- **License:** Apache-2.0
|
145 |
+
- **Developed by:** Cécile Macaire
|
146 |
+
- **Funded by**
|
147 |
+
- GENCI-IDRIS (Grant 2023-AD011013625R1)
|
148 |
+
- PROPICTO ANR-20-CE93-0005
|
149 |
+
- **Authors**
|
150 |
+
- Cécile Macaire
|
151 |
+
- Chloé Dion
|
152 |
+
- Emmanuelle Esperança-Rodier
|
153 |
+
- Benjamin Lecouteux
|
154 |
+
- Didier Schwab
|
155 |
+
|
156 |
+
|
157 |
+
## Citation
|
158 |
+
|
159 |
+
If you use this model for your own research work, please cite as follows:
|
160 |
+
|
161 |
+
```bibtex
|
162 |
+
@inproceedings{macaire_jeptaln2024,
|
163 |
+
title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}},
|
164 |
+
author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle},
|
165 |
+
url = {https://inria.hal.science/hal-04623007},
|
166 |
+
booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}},
|
167 |
+
address = {Toulouse, France},
|
168 |
+
publisher = {{ATALA \& AFPC}},
|
169 |
+
volume = {1 : articles longs et prises de position},
|
170 |
+
pages = {22-35},
|
171 |
+
year = {2024}
|
172 |
+
}
|
173 |
+
```
|