File size: 2,752 Bytes
2179f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: results
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: multi_news
      type: multi_news
      config: default
      split: validation
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 37.35992631839289
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9028
- Rouge1: 37.3599
- Rouge2: 12.1820
- Rougel: 21.4068
- Rougelsum: 21.3827
- Gen Len: 141.366

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 313  | 3.0888          | 33.8257 | 10.0913 | 19.3859 | 19.3966   | 131.264 |
| 3.487         | 2.0   | 626  | 3.0216          | 36.0141 | 11.1691 | 20.4601 | 20.4538   | 138.12  |
| 3.487         | 3.0   | 939  | 2.9906          | 36.2470 | 11.3578 | 20.6635 | 20.6692   | 138.632 |
| 3.2354        | 4.0   | 1252 | 2.9727          | 36.7252 | 11.5422 | 20.9492 | 20.9458   | 139.433 |
| 3.1863        | 5.0   | 1565 | 2.9586          | 36.6970 | 11.6533 | 20.9281 | 20.9236   | 140.189 |
| 3.1863        | 6.0   | 1878 | 2.9511          | 36.8584 | 11.7427 | 21.1395 | 21.1377   | 140.747 |
| 3.1624        | 7.0   | 2191 | 2.9441          | 36.9490 | 11.8362 | 21.2388 | 21.2508   | 140.994 |
| 3.1462        | 8.0   | 2504 | 2.9406          | 37.0855 | 11.8388 | 21.2447 | 21.2583   | 141.331 |
| 3.1462        | 9.0   | 2817 | 2.9383          | 37.0757 | 11.8588 | 21.2306 | 21.2472   | 140.901 |
| 3.1409        | 10.0  | 3130 | 2.9376          | 37.1450 | 11.9259 | 21.3013 | 21.3147   | 141.081 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1