|
weight = None |
|
resume = False |
|
evaluate = True |
|
test_only = False |
|
seed = 43244662 |
|
save_path = 'exp/scannet/semseg-pt-v3m1-0-base' |
|
num_worker = 24 |
|
batch_size = 12 |
|
batch_size_val = None |
|
batch_size_test = None |
|
epoch = 800 |
|
eval_epoch = 100 |
|
sync_bn = False |
|
enable_amp = True |
|
empty_cache = False |
|
find_unused_parameters = False |
|
mix_prob = 0.8 |
|
param_dicts = [dict(keyword='block', lr=0.0006)] |
|
hooks = [ |
|
dict(type='CheckpointLoader'), |
|
dict(type='IterationTimer', warmup_iter=2), |
|
dict(type='InformationWriter'), |
|
dict(type='SemSegEvaluator'), |
|
dict(type='CheckpointSaver', save_freq=None), |
|
dict(type='PreciseEvaluator', test_last=False) |
|
] |
|
train = dict(type='DefaultTrainer') |
|
test = dict(type='SemSegTester', verbose=True) |
|
model = dict( |
|
type='DefaultSegmentorV2', |
|
num_classes=20, |
|
backbone_out_channels=64, |
|
backbone=dict( |
|
type='PT-v3m1', |
|
in_channels=6, |
|
order=['z', 'z-trans', 'hilbert', 'hilbert-trans'], |
|
stride=(2, 2, 2, 2), |
|
enc_depths=(2, 2, 2, 6, 2), |
|
enc_channels=(32, 64, 128, 256, 512), |
|
enc_num_head=(2, 4, 8, 16, 32), |
|
enc_patch_size=(1024, 1024, 1024, 1024, 1024), |
|
dec_depths=(2, 2, 2, 2), |
|
dec_channels=(64, 64, 128, 256), |
|
dec_num_head=(4, 4, 8, 16), |
|
dec_patch_size=(1024, 1024, 1024, 1024), |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
drop_path=0.3, |
|
shuffle_orders=True, |
|
pre_norm=True, |
|
enable_rpe=False, |
|
enable_flash=True, |
|
upcast_attention=False, |
|
upcast_softmax=False, |
|
cls_mode=False, |
|
pdnorm_bn=False, |
|
pdnorm_ln=False, |
|
pdnorm_decouple=True, |
|
pdnorm_adaptive=False, |
|
pdnorm_affine=True, |
|
pdnorm_conditions=('ScanNet', 'S3DIS', 'Structured3D')), |
|
criteria=[ |
|
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1), |
|
dict( |
|
type='LovaszLoss', |
|
mode='multiclass', |
|
loss_weight=1.0, |
|
ignore_index=-1) |
|
]) |
|
optimizer = dict(type='AdamW', lr=0.006, weight_decay=0.05) |
|
scheduler = dict( |
|
type='OneCycleLR', |
|
max_lr=[0.006, 0.0006], |
|
pct_start=0.05, |
|
anneal_strategy='cos', |
|
div_factor=10.0, |
|
final_div_factor=1000.0) |
|
dataset_type = 'ScanNetDataset' |
|
data_root = 'data/scannet' |
|
data = dict( |
|
num_classes=20, |
|
ignore_index=-1, |
|
names=[ |
|
'wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', |
|
'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', |
|
'refridgerator', 'shower curtain', 'toilet', 'sink', 'bathtub', |
|
'otherfurniture' |
|
], |
|
train=dict( |
|
type='ScanNetDataset', |
|
split='train', |
|
data_root='data/scannet', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict( |
|
type='RandomDropout', |
|
dropout_ratio=0.2, |
|
dropout_application_ratio=0.2), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-1, 1], |
|
axis='z', |
|
center=[0, 0, 0], |
|
p=0.5), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-0.015625, 0.015625], |
|
axis='x', |
|
p=0.5), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-0.015625, 0.015625], |
|
axis='y', |
|
p=0.5), |
|
dict(type='RandomScale', scale=[0.9, 1.1]), |
|
dict(type='RandomFlip', p=0.5), |
|
dict(type='RandomJitter', sigma=0.005, clip=0.02), |
|
dict( |
|
type='ElasticDistortion', |
|
distortion_params=[[0.2, 0.4], [0.8, 1.6]]), |
|
dict(type='ChromaticAutoContrast', p=0.2, blend_factor=None), |
|
dict(type='ChromaticTranslation', p=0.95, ratio=0.05), |
|
dict(type='ChromaticJitter', p=0.95, std=0.05), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='train', |
|
return_grid_coord=True), |
|
dict(type='SphereCrop', point_max=102400, mode='random'), |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='NormalizeColor'), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'segment'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
test_mode=False, |
|
loop=8), |
|
val=dict( |
|
type='ScanNetDataset', |
|
split='val', |
|
data_root='data/scannet', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='train', |
|
return_grid_coord=True), |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='NormalizeColor'), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'segment'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
test_mode=False), |
|
test=dict( |
|
type='ScanNetDataset', |
|
split='val', |
|
data_root='data/scannet', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict(type='NormalizeColor') |
|
], |
|
test_mode=True, |
|
test_cfg=dict( |
|
voxelize=dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='test', |
|
keys=('coord', 'color', 'normal'), |
|
return_grid_coord=True), |
|
crop=None, |
|
post_transform=[ |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'index'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
aug_transform=[[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], [{ |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}]]))) |
|
|