
4xRealWebPhoto_v2
Paired Dataset Preparation Summary



Purpose

Goal: A 4x paired dataset that can be used to train sisr models for upscaling photos downloaded 
from the web.

Usecase: Person takes photo, uploads it on the web. Another person downloads that image, and 
re-uploads it on the web. We now download this image and upscale it.

Dataset: Apply degradations to a photo dataset.

Degradations simulating the usecase: Apply some realistic noise (my ludvae model) and realistic 
blur (weak lens blur) to simulate a photo that might have noise&blur, then scale and compress it 
(treatment applied by web service provider when uploading), re-scale and re-compress it (again, 
service provider when uploading). 

(To be honest, this is the third iteration of this dataset, previous learnings carried into this one)



Simulating use case (me and a friend in the background goofing off / having fun)



Input Dataset



Processing 1. Step: Multiscale

I multiscale the dataset to improve model learning for crop size (for example, bush leaves look different 
from close up and from afar).

The dataset consists of 512x512px images. I use 1, 0.75, 0.5 and 0.25 multiscale so we get 512x512, 
384x384, 256x256 and 128x128 px images. This means max gt_size is 128. 

Normally higher crop means better quality output for transformer, since the model gets more context. But, 
since I use multiscale, I expect a similar amount of information for the model to learn from (since the crop 
of the smallest image contains the full image) while training will be faster (so a trade-off for increased 
training speed while quality hit should not be bad. Alternatively I could also have gone with 0.5 as lowest 
scale with therefore 256 as highest crop size - I did that at first, but changed based on above thoughts).

Multiscaling this way also increase the number of images in the dataset from 8492 to 33968, which will 
also improve degradation distribution, since the degradations are randomized pre-applied, instead of 
images being on-the-fly randomized degraded during training (so static instead of dynamic degradation 
during training).



Applying multiscale to nomos8k



Processing Step 2: Blur

In this step, I am applying realistic lens blur with the help of python script i made 
using NatLee/Blur-Generator from github. Since in my previous experiment the 
model had a bit of trouble handling realistic lens blur, this time I opted to duplicate 
each image but with lens blur radius 2 or 3 applied (see appendix), meaning the 
network will have a non-blurry and blurry version of each image to learn from. My 
idea is that this should help the trained sisr model handle non-blurry as well as 
blurry input images better.

Of course this step also increased dataset size because of this duplication 
approach.



Testing out lens blur strength parameters (radius, components, exposure_gamma)



Testing lens blur radius parameter visualization (components and exposure_gamma constant)



Applying lens blur to the dataset with lens blur radius between 2 and 3 
while keeping components at 4 and exposure_gamma at 2.



Processing Step 3: Applying realistic noise

In this step I use my own LUD-VAE model trained on RealLR200 which includes 
200 real-world low-resolution images (from the SeeSR github repo) to apply 
realistic noise to the dataset, with strengths based on my tests.

Since in my previous version of this dataset applied a temperature between 0 and 
0.15, all the images had noise to various degrees, but there was not a single 
image for the network to learn from that had not noise in it, even if it was small (no 
noise-free lr would exist).

So I am applying the same strategy as with the blur, by duplicating / combining 
again, and setting a minimum strength to noise that is already noticeable. So there 
will be noise&blur free images, blurry images, noisy images, and blurry&noisy 
images in the dataset. Scaling and compression steps are still to follow.



LUD-VAE training of my ludvae200 degradation model 
on RealLR200 (which includes 200 real-world low-resolution images) provided on the SeeSR github repo.

2 nights, ~ 17 hours, 
190’000 iters



Ludvae200 degraded image to showcase realistically added noise of my model



Ludvae200 degraded image to showcase realistically added noise of my model



Adding realistic noise with my ludvae200 degradation model 
to the dataset



Just to showcase, I currently have 4 
degraded versions per image on a 
per-scale basis (example scale 1):

Blur & Noise (top left)

Blur (top right)

Noise (bottom left)

None (bottom right)

(so since we had multiscaled with 4 
scales in this way we turned each 
image of the original dataset into 16 
images)



Processing Step 4: Applying scale and compression

In this step, we use kim’s Dataset Destroyer to first scale then compress in a 
2-step manner, both times scaling with 0.5 to reach a x4 lr output for the 4x paired 
dataset.

Scaling algos used: down_up, nearest, linear, cubic_catrom, cubic_mitchell, 
cubic_bspline, lanczos, gaussian

Compression: jpg 40-100 and webp 45-100

Strengths are applied in a randomized manner, since we have 135’872 lr images 
now (multiscaling and degradation versions) this should help having a good 
distribution of applied compression strengths.



Applying scale and compression



Applying re-scaling and re-compression



Final lr’s after (re)scaling and 
(re)compressing

- same example as previously 

(enlarged to fill slide for better 
visibility)



Scale and compression variants

When looking at the results, all of the lr’s will be rescaled and recompressed (look pretty degraded) to 
various degrees of strengths, but there currently is no non-compressed image in the dataset.

So like I previously made variants for both blur and noise to also have for example non-degraded images 
in the dataset so the network can learn from a better distribution meaning non-degraded as well as 
degraded images, I also decided to apply the same strategy here.

Also made versions and combined again

Only x4 scaled (learn different scaling algorithms on blur&noise, blur, noise and non-degraded images)

X4 scaled and compressed (learn additionally jpg and webp compression to the above)

Rescaled (0.5 scale, then compression, then 0.5 rescale) (learn scaled compression to the above)

Rescaled and recompressed (0.5 scale, compression, 0.5 rescale, recompression) (learn recompression 
to the above)



All use cases a sisr model trained on this dataset could be able
to handle since I created all these different variants in the lr

Good Quality Blurry&Noisy Blurry Noisy

x4 downsized only
(down_up, nearest, 
linear, cubic_catrom, 
cubic_mitchell, 
cubic_bspline, lanczos, 
gaussian)

x4 downsized and 
compressed (jpg 40-100 
or webp 45-100) 
- uploaded to the web

x2 downsized, 
compressed, x2 
re-downsized (so 
contains scaled 
compression)

x2 downsized, 
compressed, x2 
re-downsized, 
recompressed 
- downloaded and 
re-uploaded from and to 
the web



Normalizing filenames



Dataset stats

Original input dataset: nomos8k - 8’492 images, 6.7 GB

Output dataset: 4xRealWebPhoto_v2 - 1’086’978 images (543’489 image pairs), 132.7 
GB

(Disk size could be decreased by removing duplicates from hr and explicitly mapping 
each lr to its corresponding hr in a many-to-one relationship)


