PeYing commited on
Commit
50d946c
·
verified ·
1 Parent(s): ea345bb

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:182
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: What documents must contractors/vendors provide?
12
+ sentences:
13
+ - 1. ESH representatives will carry out the training when new employees need to
14
+ be trained, or on an annual basis.
15
+ - "1. Safe Operating Procedure (SOP). \n2. Risk Assessment ( Hazard Identification,\
16
+ \ Risk Assessment, & Risk control / HIRARC) / JSA / Job Safety Analysis. \n3.\
17
+ \ Valid licenses (If applicable). \n4. Certification of Fitness-CF (For all types\
18
+ \ of cranes). \n5. Crane Operator Competency License. (If applicable). \n6. All\
19
+ \ scaffolding must be erected as per the statutory regulations. \n7. Lifting Supervisor\
20
+ \ Competency Certificate. (If applicable). \n8. Signal Man Competency Certificate.\
21
+ \ (If applicable. \n9. Rigger Competency Certificate. (If applicable). \n10. Lifting\
22
+ \ plan (If applicable). \n11. Scaffolder Level 1/2/3 Certificate. (If applicable)."
23
+ - 1. To ensure the specific employees are aware of the correct procedures associated
24
+ with chemical handling and waste management.
25
+ - source_sentence: What is the guideline for shirts and blouses?
26
+ sentences:
27
+ - 1. ESH representatives will carry out the training when new employees need to
28
+ be trained, or on an annual basis.
29
+ - 1. Employees in CLEAN ROOM are NOT ALLOWED to use/wear makeup/bangles.
30
+ - "1. 1. Formal or casual shirts with sleeves. \n2. 2. Collared T-shirts and blouses/sleeveless\
31
+ \ tops (for ladies). \n3. 3. Round-neck T-shirts are allowed for non-office personnel.\
32
+ \ \n4. 4. Clothing with the company logo is encouraged. \n5. 5. Sport Team. \n\
33
+ 6. 6. University. \n7. 7. Fashion brands on clothing are generally acceptable."
34
+ - source_sentence: What is the lunch schedule for the 1st shift in the normal schedule
35
+ in M-site?
36
+ sentences:
37
+ - 12 days.
38
+ - '1. Categorization of Machine: Identify the location of the machine, its function,
39
+ and all necessary items needed for it to run (e.g., lubricants, saw blades, etc).
40
+
41
+ 2. Authorization: Ensure that all personnel operating the machine have received
42
+ the appropriate training.
43
+
44
+ 3. Hazard & Risks associated with equipment/machinery/techniques/process: Identify
45
+ all hazards and risks associated, and implement sufficient controls according
46
+ to the hierarchy of controls (e.g., warning labels and symbols).
47
+
48
+ 4. Pre-work procedure: Ensure that the machine is in proper, running condition
49
+ before starting work.
50
+
51
+ 5. During work procedure: Follow the correct standard operating procedure for
52
+ carrying out that work activity.
53
+
54
+ 6. After work procedure: Ensure that the machine remains in a neat and tidy condition
55
+ at all times.
56
+
57
+ 7. Work Area: Identify the area where the work is being done.
58
+
59
+ 8. PPE: Ensure that appropriate PPE is available for all personnel handling the
60
+ machine.
61
+
62
+ 9. Emergency Procedure: Ensure sufficient emergency features are available on
63
+ the machine (e.g., emergency stop button).
64
+
65
+ 10. After work hour: Ensure the machine system is in shutdown/standby mode when
66
+ the machine is not running.
67
+
68
+ 11. Housekeeping: Ensure basic housekeeping is done at the work area.
69
+
70
+ 12. Scheduled waste: Any scheduled waste generated by the process should be disposed
71
+ of according to Carsem waste management procedure.'
72
+ - 1. Lunch (Tengah Hari) for the 1st shift is from 12:00 PM to 1:00 PM, lasting
73
+ 60 minutes.
74
+ - source_sentence: What is the meal schedule for M-site?
75
+ sentences:
76
+ - 2 days.
77
+ - "1. 1st Shift: -Dinner (Malam): 8:00PM - 8:40PM, -Supper(Lewat Malam): 1:00AM\
78
+ \ - 1:30 AM -Breakfast(Pagi): 8:00AM - 8:30AM -Lunch(Tengah Hari): 12:50PM - 1:30PM.\
79
+ \ \n2. 2nd Shift: -Dinner(Malam): 8:50PM - 9:30PM -Supper(Lewat Malam): 1:40AM\
80
+ \ - 2:10AM -Breakfast(Pagi): 8:40AM - 9:10AM -Lunch(Tengah Hari): 1:40PM - 2:20PM.\
81
+ \ \n3. 3rd Shift: -Dinner(Malam): 9:40PM - 10:20PM -Supper(Lewat Malam): 2:20AM\
82
+ \ - 2:50AM -Breakfast(Pagi): 9:20AM - 9:50AM -Lunch(Tengah Hari): 2:30PM - 3:10PM.\
83
+ \ \n4. 4th Shift: -Dinner(Malam): 10:30PM - 11:10PM -Supper(Lewat Malam): 3:00AM\
84
+ \ - 3:30AM -Breakfast(Pagi): 10:00AM - 10:30AM -Lunch(Tengah Hari): 3:20PM - 4:00PM."
85
+ - "1. The mechanical safety guidelines include: \n2. 1. Lock-Out Tag-Out (LOTO):\
86
+ \ Always practice LOTO procedures when performing maintenance or repairs on machines.\
87
+ \ \n3. 2. Preventive Maintenance: Conduct regular preventive maintenance on all\
88
+ \ machinery to ensure proper functioning. \n4. 3. Pinch Points Awareness: Identify\
89
+ \ all possible pinch points on machinery, and ensure they are properly labeled.\
90
+ \ \n5. 4. Production Area Organization: Keep the production area neat and organized\
91
+ \ at all times. \n6. 5. Operator Training: Provide adequate training to operators\
92
+ \ before allowing them to handle machines. \n7. 6. Machine Guarding: Ensure all\
93
+ \ safety guards are in place before starting machine operations."
94
+ - source_sentence: Can employees wear traditional attire?
95
+ sentences:
96
+ - "1. N03 : Monday to Friday, 8am to 5:30pm.\n2. N04 : Tuesday to Saturday, 8am\
97
+ \ to 5:30pm.\n3. N05 : Monday to Friday, 8:30am to 6pm.\n4. N06 : Monday to Friday,\
98
+ \ 9am to 6:30pm.\n5. N07 : Tuesday to Saturday, 8:30am to 6pm.\n6. N08 : Tuesday\
99
+ \ to Saturday, 9am to 6.30pm.\n7. N6 : Tuesday to Saturday, 8:30pm to 6:15pm.\n\
100
+ 8. N9: 5 working days 2 days off, 7:30am to 5:15pm , 10:30am to 8:15pm.\n9. N10:\
101
+ \ 5 working days 2 days off, 10:30am to 8:15pm , 7:30am to 5:15pm.\n10. AA/BB/CC/A/B/C\
102
+ \ : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.\n11. AA1/BB1/CC1/A1/B1/C1\
103
+ \ : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.\n12. GG/HH/II/GG1/HH1/II1\
104
+ \ : 4 working days 2 days off, 7:30am to 7:30pm , 7:30pm to 7:30am.\n13. P1 :\
105
+ \ Monday to Thursday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to\
106
+ \ 6:30am.\n14. P2 : Tuesday to Friday (4 working days 2 days off), 6:30am to 6:30pm\
107
+ \ , 6:30pm to 6:30am. \n15. U1/U2/U3/UU1/UU2/UU3 : 4 working days 2 days off,\
108
+ \ 7:30am to 7.30pm. \n16. V1/V2/V3/VV1/VV2/VV3 : 4 working days 2 days off, 8.30am\
109
+ \ to 8.30pm. \n17. W1/W2/W3/WW1/WW2/WW3 : 4 working days 2 days off, 6.30am to\
110
+ \ 6.30pm. \n18. H1 : Monday to Thursday (4 working days 2 days off), 6.30am to\
111
+ \ 6.30pm. \n19. H2 : Tuesday to Friday (4 working days 2 days off), 6.30am to\
112
+ \ 6.30pm. \n20. H3 : Wednesday to Saturday (4 working days 2 days off), 6.30am\
113
+ \ to 6.30pm. \n21. H6(applicable in S only) : Monday to Thursday (4 working days\
114
+ \ 2 days off), 7.30am to 7.30pm. \n22. H6(applicable in M only) : Monday to Thursday\
115
+ \ (4 working days 2 days off), 7.30am to 7.30pm."
116
+ - "1. 1st Shift: -Dinner (Malam): 8:00PM - 8:40PM, -Supper(Lewat Malam): 1:00AM\
117
+ \ - 1:30 AM -Breakfast(Pagi): 8:30AM - 9:00AM -Lunch(Tengah Hari): 1:40PM - 2:20PM.\
118
+ \ \n2. 2nd Shift: -Dinner(Malam): 8:50PM - 9:30PM -Supper(Lewat Malam): 1:40AM\
119
+ \ - 2:10AM -Breakfast(Pagi): 9:10AM - 9:40AM -Lunch(Tengah Hari): 2:30PM - 3:10PM.\
120
+ \ \n3. 3rd Shift: -Dinner(Malam): 9:40PM - 10:20PM -Supper(Lewat Malam): 2:20AM\
121
+ \ - 2:50AM -Breakfast(Pagi): 9:50AM - 10:20AM -Lunch(Tengah Hari): 3:20PM - 4:00PM."
122
+ - "1. 1. Yes, acceptable traditional attire includes: \n2. 1. Malaysian Traditional\
123
+ \ Attire. \n3. 2.Malay Baju Kurung. \n4. 3. Baju Melayu for Muslim men. \n5. 4.Indian\
124
+ \ Saree. \n6. 5. Punjabi Suit. \n7. Chinese Cheongsam are acceptable."
125
+ pipeline_tag: sentence-similarity
126
+ library_name: sentence-transformers
127
+ ---
128
+
129
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
130
+
131
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
132
+
133
+ ## Model Details
134
+
135
+ ### Model Description
136
+ - **Model Type:** Sentence Transformer
137
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
138
+ - **Maximum Sequence Length:** 256 tokens
139
+ - **Output Dimensionality:** 384 dimensions
140
+ - **Similarity Function:** Cosine Similarity
141
+ <!-- - **Training Dataset:** Unknown -->
142
+ <!-- - **Language:** Unknown -->
143
+ <!-- - **License:** Unknown -->
144
+
145
+ ### Model Sources
146
+
147
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
148
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
149
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
150
+
151
+ ### Full Model Architecture
152
+
153
+ ```
154
+ SentenceTransformer(
155
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
156
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
157
+ (2): Normalize()
158
+ )
159
+ ```
160
+
161
+ ## Usage
162
+
163
+ ### Direct Usage (Sentence Transformers)
164
+
165
+ First install the Sentence Transformers library:
166
+
167
+ ```bash
168
+ pip install -U sentence-transformers
169
+ ```
170
+
171
+ Then you can load this model and run inference.
172
+ ```python
173
+ from sentence_transformers import SentenceTransformer
174
+
175
+ # Download from the 🤗 Hub
176
+ model = SentenceTransformer("PeYing/model1_v2")
177
+ # Run inference
178
+ sentences = [
179
+ 'Can employees wear traditional attire?',
180
+ '1. 1. Yes, acceptable traditional attire includes: \n2. 1. Malaysian Traditional Attire. \n3. 2.Malay Baju Kurung. \n4. 3. Baju Melayu for Muslim men. \n5. 4.Indian Saree. \n6. 5. Punjabi Suit. \n7. Chinese Cheongsam are acceptable.',
181
+ '1. N03 : Monday to Friday, 8am to 5:30pm.\n2. N04 : Tuesday to Saturday, 8am to 5:30pm.\n3. N05 : Monday to Friday, 8:30am to 6pm.\n4. N06 : Monday to Friday, 9am to 6:30pm.\n5. N07 : Tuesday to Saturday, 8:30am to 6pm.\n6. N08 : Tuesday to Saturday, 9am to 6.30pm.\n7. N6 : Tuesday to Saturday, 8:30pm to 6:15pm.\n8. N9: 5 working days 2 days off, 7:30am to 5:15pm , 10:30am to 8:15pm.\n9. N10: 5 working days 2 days off, 10:30am to 8:15pm , 7:30am to 5:15pm.\n10. AA/BB/CC/A/B/C : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.\n11. AA1/BB1/CC1/A1/B1/C1 : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.\n12. GG/HH/II/GG1/HH1/II1 : 4 working days 2 days off, 7:30am to 7:30pm , 7:30pm to 7:30am.\n13. P1 : Monday to Thursday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to 6:30am.\n14. P2 : Tuesday to Friday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to 6:30am. \n15. U1/U2/U3/UU1/UU2/UU3 : 4 working days 2 days off, 7:30am to 7.30pm. \n16. V1/V2/V3/VV1/VV2/VV3 : 4 working days 2 days off, 8.30am to 8.30pm. \n17. W1/W2/W3/WW1/WW2/WW3 : 4 working days 2 days off, 6.30am to 6.30pm. \n18. H1 : Monday to Thursday (4 working days 2 days off), 6.30am to 6.30pm. \n19. H2 : Tuesday to Friday (4 working days 2 days off), 6.30am to 6.30pm. \n20. H3 : Wednesday to Saturday (4 working days 2 days off), 6.30am to 6.30pm. \n21. H6(applicable in S only) : Monday to Thursday (4 working days 2 days off), 7.30am to 7.30pm. \n22. H6(applicable in M only) : Monday to Thursday (4 working days 2 days off), 7.30am to 7.30pm.',
182
+ ]
183
+ embeddings = model.encode(sentences)
184
+ print(embeddings.shape)
185
+ # [3, 384]
186
+
187
+ # Get the similarity scores for the embeddings
188
+ similarities = model.similarity(embeddings, embeddings)
189
+ print(similarities.shape)
190
+ # [3, 3]
191
+ ```
192
+
193
+ <!--
194
+ ### Direct Usage (Transformers)
195
+
196
+ <details><summary>Click to see the direct usage in Transformers</summary>
197
+
198
+ </details>
199
+ -->
200
+
201
+ <!--
202
+ ### Downstream Usage (Sentence Transformers)
203
+
204
+ You can finetune this model on your own dataset.
205
+
206
+ <details><summary>Click to expand</summary>
207
+
208
+ </details>
209
+ -->
210
+
211
+ <!--
212
+ ### Out-of-Scope Use
213
+
214
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
215
+ -->
216
+
217
+ <!--
218
+ ## Bias, Risks and Limitations
219
+
220
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
221
+ -->
222
+
223
+ <!--
224
+ ### Recommendations
225
+
226
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
227
+ -->
228
+
229
+ ## Training Details
230
+
231
+ ### Training Dataset
232
+
233
+ #### Unnamed Dataset
234
+
235
+ * Size: 182 training samples
236
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
237
+ * Approximate statistics based on the first 182 samples:
238
+ | | sentence_0 | sentence_1 | label |
239
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
240
+ | type | string | string | int |
241
+ | details | <ul><li>min: 7 tokens</li><li>mean: 14.43 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 53.8 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
242
+ * Samples:
243
+ | sentence_0 | sentence_1 | label |
244
+ |:----------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
245
+ | <code>List out all the work schedule for Carsem.</code> | <code>1. N03 : Monday to Friday, 8am to 5:30pm.<br>2. N04 : Tuesday to Saturday, 8am to 5:30pm.<br>3. N05 : Monday to Friday, 8:30am to 6pm.<br>4. N06 : Monday to Friday, 9am to 6:30pm.<br>5. N07 : Tuesday to Saturday, 8:30am to 6pm.<br>6. N08 : Tuesday to Saturday, 9am to 6.30pm.<br>7. N6 : Tuesday to Saturday, 8:30pm to 6:15pm.<br>8. N9: 5 working days 2 days off, 7:30am to 5:15pm , 10:30am to 8:15pm.<br>9. N10: 5 working days 2 days off, 10:30am to 8:15pm , 7:30am to 5:15pm.<br>10. AA/BB/CC/A/B/C : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.<br>11. AA1/BB1/CC1/A1/B1/C1 : 4 working days 2 days off, 6:30am to 6:30pm , 6:30pm to 6:30am.<br>12. GG/HH/II/GG1/HH1/II1 : 4 working days 2 days off, 7:30am to 7:30pm , 7:30pm to 7:30am.<br>13. P1 : Monday to Thursday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to 6:30am.<br>14. P2 : Tuesday to Friday (4 working days 2 days off), 6:30am to 6:30pm , 6:30pm to 6:30am. <br>15. U1/U2/U3/UU1/UU2/UU3 : 4 working days 2 days off, 7:30am to 7.30pm. <br>16. V1/V2/V3/VV1/VV...</code> | <code>1</code> |
246
+ | <code>What is the maximum allowed working hours in a week?</code> | <code>1. Employees are not allowed to work more than 60 hours in a week inclusive of overtime and 1 rest day per week. Company will monitor overtime and rest day utilization and take appropriate action to address instances deemed excessive.</code> | <code>1</code> |
247
+ | <code>Why the company is not allowed working hours in a week more than 60 hours?</code> | <code>1. Continuous overtime causes worker strain that may lead to reduced productivity, increased turnover and increased injury and illnesses.</code> | <code>1</code> |
248
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
249
+ ```json
250
+ {
251
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
252
+ }
253
+ ```
254
+
255
+ ### Training Hyperparameters
256
+ #### Non-Default Hyperparameters
257
+
258
+ - `per_device_train_batch_size`: 1
259
+ - `per_device_eval_batch_size`: 1
260
+ - `num_train_epochs`: 1
261
+ - `multi_dataset_batch_sampler`: round_robin
262
+
263
+ #### All Hyperparameters
264
+ <details><summary>Click to expand</summary>
265
+
266
+ - `overwrite_output_dir`: False
267
+ - `do_predict`: False
268
+ - `eval_strategy`: no
269
+ - `prediction_loss_only`: True
270
+ - `per_device_train_batch_size`: 1
271
+ - `per_device_eval_batch_size`: 1
272
+ - `per_gpu_train_batch_size`: None
273
+ - `per_gpu_eval_batch_size`: None
274
+ - `gradient_accumulation_steps`: 1
275
+ - `eval_accumulation_steps`: None
276
+ - `torch_empty_cache_steps`: None
277
+ - `learning_rate`: 5e-05
278
+ - `weight_decay`: 0.0
279
+ - `adam_beta1`: 0.9
280
+ - `adam_beta2`: 0.999
281
+ - `adam_epsilon`: 1e-08
282
+ - `max_grad_norm`: 1
283
+ - `num_train_epochs`: 1
284
+ - `max_steps`: -1
285
+ - `lr_scheduler_type`: linear
286
+ - `lr_scheduler_kwargs`: {}
287
+ - `warmup_ratio`: 0.0
288
+ - `warmup_steps`: 0
289
+ - `log_level`: passive
290
+ - `log_level_replica`: warning
291
+ - `log_on_each_node`: True
292
+ - `logging_nan_inf_filter`: True
293
+ - `save_safetensors`: True
294
+ - `save_on_each_node`: False
295
+ - `save_only_model`: False
296
+ - `restore_callback_states_from_checkpoint`: False
297
+ - `no_cuda`: False
298
+ - `use_cpu`: False
299
+ - `use_mps_device`: False
300
+ - `seed`: 42
301
+ - `data_seed`: None
302
+ - `jit_mode_eval`: False
303
+ - `use_ipex`: False
304
+ - `bf16`: False
305
+ - `fp16`: False
306
+ - `fp16_opt_level`: O1
307
+ - `half_precision_backend`: auto
308
+ - `bf16_full_eval`: False
309
+ - `fp16_full_eval`: False
310
+ - `tf32`: None
311
+ - `local_rank`: 0
312
+ - `ddp_backend`: None
313
+ - `tpu_num_cores`: None
314
+ - `tpu_metrics_debug`: False
315
+ - `debug`: []
316
+ - `dataloader_drop_last`: False
317
+ - `dataloader_num_workers`: 0
318
+ - `dataloader_prefetch_factor`: None
319
+ - `past_index`: -1
320
+ - `disable_tqdm`: False
321
+ - `remove_unused_columns`: True
322
+ - `label_names`: None
323
+ - `load_best_model_at_end`: False
324
+ - `ignore_data_skip`: False
325
+ - `fsdp`: []
326
+ - `fsdp_min_num_params`: 0
327
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
328
+ - `fsdp_transformer_layer_cls_to_wrap`: None
329
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
330
+ - `deepspeed`: None
331
+ - `label_smoothing_factor`: 0.0
332
+ - `optim`: adamw_torch
333
+ - `optim_args`: None
334
+ - `adafactor`: False
335
+ - `group_by_length`: False
336
+ - `length_column_name`: length
337
+ - `ddp_find_unused_parameters`: None
338
+ - `ddp_bucket_cap_mb`: None
339
+ - `ddp_broadcast_buffers`: False
340
+ - `dataloader_pin_memory`: True
341
+ - `dataloader_persistent_workers`: False
342
+ - `skip_memory_metrics`: True
343
+ - `use_legacy_prediction_loop`: False
344
+ - `push_to_hub`: False
345
+ - `resume_from_checkpoint`: None
346
+ - `hub_model_id`: None
347
+ - `hub_strategy`: every_save
348
+ - `hub_private_repo`: None
349
+ - `hub_always_push`: False
350
+ - `gradient_checkpointing`: False
351
+ - `gradient_checkpointing_kwargs`: None
352
+ - `include_inputs_for_metrics`: False
353
+ - `include_for_metrics`: []
354
+ - `eval_do_concat_batches`: True
355
+ - `fp16_backend`: auto
356
+ - `push_to_hub_model_id`: None
357
+ - `push_to_hub_organization`: None
358
+ - `mp_parameters`:
359
+ - `auto_find_batch_size`: False
360
+ - `full_determinism`: False
361
+ - `torchdynamo`: None
362
+ - `ray_scope`: last
363
+ - `ddp_timeout`: 1800
364
+ - `torch_compile`: False
365
+ - `torch_compile_backend`: None
366
+ - `torch_compile_mode`: None
367
+ - `dispatch_batches`: None
368
+ - `split_batches`: None
369
+ - `include_tokens_per_second`: False
370
+ - `include_num_input_tokens_seen`: False
371
+ - `neftune_noise_alpha`: None
372
+ - `optim_target_modules`: None
373
+ - `batch_eval_metrics`: False
374
+ - `eval_on_start`: False
375
+ - `use_liger_kernel`: False
376
+ - `eval_use_gather_object`: False
377
+ - `average_tokens_across_devices`: False
378
+ - `prompts`: None
379
+ - `batch_sampler`: batch_sampler
380
+ - `multi_dataset_batch_sampler`: round_robin
381
+
382
+ </details>
383
+
384
+ ### Framework Versions
385
+ - Python: 3.11.11
386
+ - Sentence Transformers: 3.4.1
387
+ - Transformers: 4.48.2
388
+ - PyTorch: 2.5.1+cu124
389
+ - Accelerate: 1.2.1
390
+ - Datasets: 3.2.0
391
+ - Tokenizers: 0.21.0
392
+
393
+ ## Citation
394
+
395
+ ### BibTeX
396
+
397
+ #### Sentence Transformers
398
+ ```bibtex
399
+ @inproceedings{reimers-2019-sentence-bert,
400
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
401
+ author = "Reimers, Nils and Gurevych, Iryna",
402
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
403
+ month = "11",
404
+ year = "2019",
405
+ publisher = "Association for Computational Linguistics",
406
+ url = "https://arxiv.org/abs/1908.10084",
407
+ }
408
+ ```
409
+
410
+ <!--
411
+ ## Glossary
412
+
413
+ *Clearly define terms in order to be accessible across audiences.*
414
+ -->
415
+
416
+ <!--
417
+ ## Model Card Authors
418
+
419
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
420
+ -->
421
+
422
+ <!--
423
+ ## Model Card Contact
424
+
425
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
426
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc16c2bc95a6b8ac3761bcb6337cc131064093a68a3826c0cd5461a89e3fa0d8
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff