AliMGH commited on
Commit
91add43
·
verified ·
1 Parent(s): 38f0312

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -176
README.md CHANGED
@@ -12,197 +12,59 @@ widget:
12
  - text: "سید ابراهیم رییسی در سال <mask> رییس جمهور ایران شد."
13
  - text: "دیگر امکان ادامه وجود ندارد. باید قرارداد را <mask> کنیم."
14
  ---
15
- # Model Card for Model ID
16
 
17
- <!-- Provide a quick summary of what the model is/does. -->
18
 
19
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
20
 
21
- ## Model Details
22
 
23
- ### Model Description
 
24
 
25
- <!-- Provide a longer summary of what this model is. -->
 
26
 
 
 
 
27
 
 
 
 
28
 
29
- - **Developed by:** [More Information Needed]
30
- - **Funded by [optional]:** [More Information Needed]
31
- - **Shared by [optional]:** [More Information Needed]
32
- - **Model type:** [More Information Needed]
33
- - **Language(s) (NLP):** [More Information Needed]
34
- - **License:** [More Information Needed]
35
- - **Finetuned from model [optional]:** [More Information Needed]
36
 
37
- ### Model Sources [optional]
 
38
 
39
- <!-- Provide the basic links for the model. -->
 
 
40
 
41
- - **Repository:** [More Information Needed]
42
- - **Paper [optional]:** [More Information Needed]
43
- - **Demo [optional]:** [More Information Needed]
44
 
45
- ## Uses
46
-
47
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
48
-
49
- ### Direct Use
50
-
51
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
52
-
53
- [More Information Needed]
54
-
55
- ### Downstream Use [optional]
56
-
57
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
58
-
59
- [More Information Needed]
60
-
61
- ### Out-of-Scope Use
62
-
63
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
64
-
65
- [More Information Needed]
66
-
67
- ## Bias, Risks, and Limitations
68
-
69
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
70
-
71
- [More Information Needed]
72
-
73
- ### Recommendations
74
-
75
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
76
-
77
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
78
-
79
- ## How to Get Started with the Model
80
-
81
- Use the code below to get started with the model.
82
-
83
- [More Information Needed]
84
-
85
- ## Training Details
86
-
87
- ### Training Data
88
-
89
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
90
-
91
- [More Information Needed]
92
-
93
- ### Training Procedure
94
-
95
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
96
-
97
- #### Preprocessing [optional]
98
-
99
- [More Information Needed]
100
-
101
-
102
- #### Training Hyperparameters
103
-
104
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
105
-
106
- #### Speeds, Sizes, Times [optional]
107
-
108
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
109
-
110
- [More Information Needed]
111
 
112
  ## Evaluation
113
 
114
- <!-- This section describes the evaluation protocols and provides the results. -->
115
-
116
- ### Testing Data, Factors & Metrics
117
-
118
- #### Testing Data
119
-
120
- <!-- This should link to a Dataset Card if possible. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Factors
125
-
126
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
127
-
128
- [More Information Needed]
129
-
130
- #### Metrics
131
-
132
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
133
-
134
- [More Information Needed]
135
-
136
- ### Results
137
-
138
- [More Information Needed]
139
-
140
- #### Summary
141
-
142
-
143
-
144
- ## Model Examination [optional]
145
-
146
- <!-- Relevant interpretability work for the model goes here -->
147
-
148
- [More Information Needed]
149
-
150
- ## Environmental Impact
151
-
152
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
153
-
154
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
155
-
156
- - **Hardware Type:** [More Information Needed]
157
- - **Hours used:** [More Information Needed]
158
- - **Cloud Provider:** [More Information Needed]
159
- - **Compute Region:** [More Information Needed]
160
- - **Carbon Emitted:** [More Information Needed]
161
-
162
- ## Technical Specifications [optional]
163
-
164
- ### Model Architecture and Objective
165
-
166
- [More Information Needed]
167
-
168
- ### Compute Infrastructure
169
-
170
- [More Information Needed]
171
-
172
- #### Hardware
173
-
174
- [More Information Needed]
175
-
176
- #### Software
177
-
178
- [More Information Needed]
179
-
180
- ## Citation [optional]
181
-
182
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
183
-
184
- **BibTeX:**
185
-
186
- [More Information Needed]
187
-
188
- **APA:**
189
-
190
- [More Information Needed]
191
-
192
- ## Glossary [optional]
193
-
194
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
195
-
196
- [More Information Needed]
197
-
198
- ## More Information [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Authors [optional]
203
 
204
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
205
 
206
- ## Model Card Contact
207
 
208
- [More Information Needed]
 
12
  - text: "سید ابراهیم رییسی در سال <mask> رییس جمهور ایران شد."
13
  - text: "دیگر امکان ادامه وجود ندارد. باید قرارداد را <mask> کنیم."
14
  ---
15
+ # Model Details
16
 
17
+ TookaBERT models are a family of encoder models trained on Persian in two sizes base and large. These Models pre-trained on over 300GB of Persian data including a variety of topics such as News, Blogs, Forums, Books, etc. They pre-trained with the MLM (WWM) objective using two context lengths. TookaBERT-Large is the first large encoder model pre-trained on Persian and currently is the state-of-the-art model in Persian tasks.
18
 
19
+ ## How to use
20
 
21
+ You can use this model directly for Masked Language Modeling using the provided code below.
22
 
23
+ ```Python
24
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
25
 
26
+ tokenizer = AutoTokenizer.from_pretrained("PartAI/PartBert-Large")
27
+ model = AutoModelForMaskedLM.from_pretrained("PartAI/PartBert-Large")
28
 
29
+ # prepare input
30
+ text = "شهر برلین در کشور <mask> واقع شده است."
31
+ encoded_input = tokenizer(text, return_tensors='pt')
32
 
33
+ # forward pass
34
+ output = model(**encoded_input)
35
+ ```
36
 
37
+ It is also possible to use inference pipelines such as below.
 
 
 
 
 
 
38
 
39
+ ```Python
40
+ from transformers import pipeline
41
 
42
+ inference_pipeline = pipeline('fill-mask', model="PartAI/PartBert-Large")
43
+ inference_pipeline("شهر برلین در کشور <mask> واقع شده است.")
44
+ ```
45
 
46
+ You can use this model to fine-tune it over your dataset and prepare it for your task.
 
 
47
 
48
+ - DeepSentiPers (Sentiment Analysis) <a href="https://colab.research.google.com/drive/1G2LgVRwq4X9J0Tf6vg7Pwm5hmCZ5ziJ4#scrollTo=1B1YrypZxajF"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab Code" width="87" height="15"/></a>
49
+ - ParsiNLU - Multiple-choice (Multiple-choice) <a href="https://colab.research.google.com/drive/1Xs48SYi6tRiofIh86h221fiMf6ZPiPS4#scrollTo=kdavgKAeGj4s"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab Code" width="87" height="15"/></a>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  ## Evaluation
52
 
53
+ TookaBERT models are evaluated on a wide range of NLP downstream tasks, such as Sentiment Analysis (SA), Text Classification, Multiple-choice, Question Answering, and Named Entity Recognition (NER).
54
+ Here are some key performance results:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ | Model name | DeepSentiPers (f1/acc) | MultiCoNER-v2 (f1/acc) | PQuAD (best_exact/best_f1/HasAns_exact/HasAns_f1) | FarsTail (f1/acc) | ParsiNLU-Multiple-choice (f1/acc) | ParsiNLU-Reading-comprehension (exact/f1) | ParsiNLU-QQP (f1/acc) |
57
+ |------------------|------------------------|------------------------|-----------------------------------------------------|--------------------|-----------------------------------|-------------------------------------------|-----------------------|
58
+ | TookaBERT-large | **85.66/85.78** | **69.69/94.07** | **75.56/88.06/70.24/87.83** | **89.71/89.72** | **36.13/35.97** | **33.6/60.5** | **82.72/82.63** |
59
+ | TookaBERT-base | <u>83.93/83.93</u> | <u>66.23/93.3</u> | <u>73.18</u>/<u>85.71</u>/<u>68.29</u>/<u>85.94</u> | <u>83.26/83.41</u> | 33.6/<u>33.81</u> | 20.8/42.52 | <u>81.33/81.29</u> |
60
+ | Shiraz | 81.17/81.08 | 59.1/92.83 | 65.96/81.25/59.63/81.31 | 77.76/77.75 | <u>34.73/34.53</u> | 17.6/39.61 | 79.68/79.51 |
61
+ | ParsBERT | 80.22/80.23 | 64.91/93.23 | 71.41/84.21/66.29/84.57 | 80.89/80.94 | **35.34/35.25** | 20/39.58 | 80.15/80.07 |
62
+ | XLM-V-base | <u>83.43/83.36</u> | 58.83/92.23 | <u>73.26</u>/<u>85.69</u>/<u>68.21</u>/<u>85.56</u> | 81.1/81.2 | **35.28/35.25** | 8/26.66 | 80.1/79.96 |
63
+ | XLM-RoBERTa-base | <u>83.99/84.07</u> | 60.38/92.49 | <u>73.72</u>/<u>86.24</u>/<u>68.16</u>/<u>85.8</u> | 82.0/81.98 | 32.4/32.37 | 20.0/40.43 | 79.14/78.95 |
64
+ | FaBERT | 82.68/82.65 | 63.89/93.01 | <u>72.57</u>/<u>85.39</u>/67.16/<u>85.31</u> | <u>83.69/83.67</u> | 32.47/32.37 | <u>27.2/48.42</u> | **82.34/82.29** |
65
+ | mBERT | 78.57/78.66 | 60.31/92.54 | 71.79/84.68/65.89/83.99 | <u>82.69/82.82</u> | 33.41/33.09 | <u>27.2</u>/42.18 | 79.19/79.29 |
66
+ | AriaBERT | 80.51/80.51 | 60.98/92.45 | 68.09/81.23/62.12/80.94 | 74.47/74.43 | 30.75/30.94 | 14.4/35.48 | 79.09/78.84 |
67
 
68
+ \*Note because of the randomness in the fine-tuning process, results with less than 1% differences are considered together.
69
 
70
+ ## How to Cite