|
|
|
""" |
|
Demo script for the Algorithmic Trading System with FinRL and Alpaca Integration |
|
|
|
This script demonstrates the complete trading workflow including: |
|
- Data ingestion from multiple sources (CSV, Alpaca, Synthetic) |
|
- Strategy generation with technical indicators |
|
- Order execution with Alpaca broker |
|
- FinRL reinforcement learning integration |
|
- Real-time trading capabilities |
|
""" |
|
|
|
import os |
|
import sys |
|
import time |
|
import logging |
|
from datetime import datetime, timedelta |
|
from typing import Dict, Any |
|
|
|
|
|
sys.path.append(os.path.dirname(os.path.abspath(__file__))) |
|
|
|
from agentic_ai_system.main import load_config |
|
from agentic_ai_system.orchestrator import run, run_backtest, run_live_trading |
|
from agentic_ai_system.data_ingestion import load_data, validate_data, add_technical_indicators |
|
from agentic_ai_system.finrl_agent import FinRLAgent, FinRLConfig |
|
from agentic_ai_system.alpaca_broker import AlpacaBroker |
|
|
|
def setup_logging(): |
|
"""Setup logging configuration""" |
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', |
|
handlers=[ |
|
logging.StreamHandler(), |
|
logging.FileHandler('logs/demo.log') |
|
] |
|
) |
|
|
|
def print_system_info(config: Dict[str, Any]): |
|
"""Print system configuration information""" |
|
print("\n" + "="*60) |
|
print("🤖 ALGORITHMIC TRADING SYSTEM WITH FINRL & ALPACA") |
|
print("="*60) |
|
|
|
print(f"\n📊 Data Source: {config['data_source']['type']}") |
|
print(f"📈 Trading Symbol: {config['trading']['symbol']}") |
|
print(f"💰 Capital: ${config['trading']['capital']:,}") |
|
print(f"⏱️ Timeframe: {config['trading']['timeframe']}") |
|
print(f"🔧 Broker API: {config['execution']['broker_api']}") |
|
|
|
if config['execution']['broker_api'] in ['alpaca_paper', 'alpaca_live']: |
|
print(f"🏦 Alpaca Account Type: {config['alpaca']['account_type']}") |
|
print(f"📡 Alpaca Base URL: {config['alpaca']['base_url']}") |
|
|
|
print(f"🧠 FinRL Algorithm: {config['finrl']['algorithm']}") |
|
print(f"📚 Learning Rate: {config['finrl']['learning_rate']}") |
|
print(f"🎯 Training Steps: {config['finrl']['training']['total_timesteps']:,}") |
|
|
|
print("\n" + "="*60) |
|
|
|
def demo_data_ingestion(config: Dict[str, Any]): |
|
"""Demonstrate data ingestion capabilities""" |
|
print("\n📥 DATA INGESTION DEMO") |
|
print("-" * 30) |
|
|
|
try: |
|
|
|
print(f"Loading data from source: {config['data_source']['type']}") |
|
data = load_data(config) |
|
|
|
if data is not None and not data.empty: |
|
print(f"✅ Successfully loaded {len(data)} data points") |
|
print(f"📅 Date range: {data['timestamp'].min()} to {data['timestamp'].max()}") |
|
print(f"💰 Price range: ${data['close'].min():.2f} - ${data['close'].max():.2f}") |
|
|
|
|
|
if validate_data(data): |
|
print("✅ Data validation passed") |
|
|
|
|
|
data_with_indicators = add_technical_indicators(data) |
|
print(f"✅ Added {len(data_with_indicators.columns) - len(data.columns)} technical indicators") |
|
|
|
return data_with_indicators |
|
else: |
|
print("❌ Data validation failed") |
|
return None |
|
else: |
|
print("❌ Failed to load data") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"❌ Error in data ingestion: {e}") |
|
return None |
|
|
|
def demo_alpaca_integration(config: Dict[str, Any]): |
|
"""Demonstrate Alpaca broker integration""" |
|
print("\n🏦 ALPACA INTEGRATION DEMO") |
|
print("-" * 30) |
|
|
|
if config['execution']['broker_api'] not in ['alpaca_paper', 'alpaca_live']: |
|
print("⚠️ Alpaca integration not configured (using simulation mode)") |
|
return None |
|
|
|
try: |
|
|
|
print("Connecting to Alpaca...") |
|
alpaca_broker = AlpacaBroker(config) |
|
|
|
|
|
account_info = alpaca_broker.get_account_info() |
|
if account_info: |
|
print(f"✅ Connected to Alpaca {config['alpaca']['account_type']} account") |
|
print(f" Account ID: {account_info['account_id']}") |
|
print(f" Status: {account_info['status']}") |
|
print(f" Buying Power: ${account_info['buying_power']:,.2f}") |
|
print(f" Portfolio Value: ${account_info['portfolio_value']:,.2f}") |
|
print(f" Equity: ${account_info['equity']:,.2f}") |
|
|
|
|
|
market_hours = alpaca_broker.get_market_hours() |
|
if market_hours: |
|
print(f"📈 Market Status: {'🟢 OPEN' if market_hours['is_open'] else '🔴 CLOSED'}") |
|
if market_hours['next_open']: |
|
print(f" Next Open: {market_hours['next_open']}") |
|
if market_hours['next_close']: |
|
print(f" Next Close: {market_hours['next_close']}") |
|
|
|
|
|
positions = alpaca_broker.get_positions() |
|
if positions: |
|
print(f"📊 Current Positions: {len(positions)}") |
|
for pos in positions: |
|
print(f" {pos['symbol']}: {pos['quantity']} shares @ ${pos['current_price']:.2f}") |
|
else: |
|
print("📊 No current positions") |
|
|
|
return alpaca_broker |
|
|
|
except Exception as e: |
|
print(f"❌ Error connecting to Alpaca: {e}") |
|
return None |
|
|
|
def demo_finrl_training(config: Dict[str, Any], data): |
|
"""Demonstrate FinRL training""" |
|
print("\n🧠 FINRL TRAINING DEMO") |
|
print("-" * 30) |
|
|
|
try: |
|
|
|
finrl_config = FinRLConfig( |
|
algorithm=config['finrl']['algorithm'], |
|
learning_rate=config['finrl']['learning_rate'], |
|
batch_size=config['finrl']['batch_size'], |
|
buffer_size=config['finrl']['buffer_size'], |
|
learning_starts=config['finrl']['learning_starts'], |
|
gamma=config['finrl']['gamma'], |
|
tau=config['finrl']['tau'], |
|
train_freq=config['finrl']['train_freq'], |
|
gradient_steps=config['finrl']['gradient_steps'], |
|
verbose=config['finrl']['verbose'], |
|
tensorboard_log=config['finrl']['tensorboard_log'] |
|
) |
|
|
|
agent = FinRLAgent(finrl_config) |
|
|
|
|
|
demo_data = data.tail(500) if len(data) > 500 else data |
|
print(f"Training on {len(demo_data)} data points...") |
|
|
|
|
|
training_steps = min(10000, config['finrl']['training']['total_timesteps']) |
|
result = agent.train( |
|
data=demo_data, |
|
config=config, |
|
total_timesteps=training_steps, |
|
use_real_broker=False |
|
) |
|
|
|
if result['success']: |
|
print(f"✅ Training completed successfully!") |
|
print(f" Algorithm: {result['algorithm']}") |
|
print(f" Timesteps: {result['total_timesteps']:,}") |
|
print(f" Model saved: {result['model_path']}") |
|
|
|
|
|
print("\n🔮 Testing predictions...") |
|
prediction_result = agent.predict( |
|
data=demo_data.tail(100), |
|
config=config, |
|
use_real_broker=False |
|
) |
|
|
|
if prediction_result['success']: |
|
print(f"✅ Prediction completed!") |
|
print(f" Initial Value: ${prediction_result['initial_value']:,.2f}") |
|
print(f" Final Value: ${prediction_result['final_value']:,.2f}") |
|
print(f" Total Return: {prediction_result['total_return']:.2%}") |
|
print(f" Total Trades: {prediction_result['total_trades']}") |
|
|
|
return agent |
|
else: |
|
print(f"❌ Training failed: {result['error']}") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"❌ Error in FinRL training: {e}") |
|
return None |
|
|
|
def demo_trading_workflow(config: Dict[str, Any], data): |
|
"""Demonstrate complete trading workflow""" |
|
print("\n🔄 TRADING WORKFLOW DEMO") |
|
print("-" * 30) |
|
|
|
try: |
|
|
|
print("Running trading workflow...") |
|
result = run(config) |
|
|
|
if result['success']: |
|
print("✅ Trading workflow completed successfully!") |
|
print(f" Data Loaded: {'✅' if result['data_loaded'] else '❌'}") |
|
print(f" Signal Generated: {'✅' if result['signal_generated'] else '❌'}") |
|
print(f" Order Executed: {'✅' if result['order_executed'] else '❌'}") |
|
print(f" Execution Time: {result['execution_time']:.2f} seconds") |
|
|
|
if result['order_executed'] and result['execution_result']: |
|
exec_result = result['execution_result'] |
|
print(f" Order ID: {exec_result.get('order_id', 'N/A')}") |
|
print(f" Action: {exec_result['action']}") |
|
print(f" Symbol: {exec_result['symbol']}") |
|
print(f" Quantity: {exec_result['quantity']}") |
|
print(f" Price: ${exec_result['price']:.2f}") |
|
print(f" Total Value: ${exec_result['total_value']:.2f}") |
|
else: |
|
print("❌ Trading workflow failed!") |
|
for error in result['errors']: |
|
print(f" Error: {error}") |
|
|
|
return result |
|
|
|
except Exception as e: |
|
print(f"❌ Error in trading workflow: {e}") |
|
return None |
|
|
|
def demo_backtest(config: Dict[str, Any], data): |
|
"""Demonstrate backtesting capabilities""" |
|
print("\n📊 BACKTESTING DEMO") |
|
print("-" * 30) |
|
|
|
try: |
|
|
|
end_date = datetime.now().strftime('%Y-%m-%d') |
|
start_date = (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d') |
|
|
|
print(f"Running backtest from {start_date} to {end_date}...") |
|
result = run_backtest(config, start_date, end_date) |
|
|
|
if result['success']: |
|
print("✅ Backtest completed successfully!") |
|
print(f" Initial Capital: ${result['initial_capital']:,.2f}") |
|
print(f" Final Value: ${result['final_value']:,.2f}") |
|
print(f" Total Return: {result['total_return']:.2%}") |
|
print(f" Total Trades: {result['total_trades']}") |
|
|
|
|
|
if result['total_trades'] > 0: |
|
win_rate = len([t for t in result['trades'] if t.get('execution', {}).get('success', False)]) / result['total_trades'] |
|
print(f" Win Rate: {win_rate:.2%}") |
|
else: |
|
print(f"❌ Backtest failed: {result.get('error', 'Unknown error')}") |
|
|
|
return result |
|
|
|
except Exception as e: |
|
print(f"❌ Error in backtesting: {e}") |
|
return None |
|
|
|
def main(): |
|
"""Main demo function""" |
|
setup_logging() |
|
|
|
try: |
|
|
|
config = load_config() |
|
print_system_info(config) |
|
|
|
|
|
data = demo_data_ingestion(config) |
|
if data is None: |
|
print("❌ Cannot proceed without data") |
|
return |
|
|
|
|
|
alpaca_broker = demo_alpaca_integration(config) |
|
|
|
|
|
finrl_agent = demo_finrl_training(config, data) |
|
|
|
|
|
workflow_result = demo_trading_workflow(config, data) |
|
|
|
|
|
backtest_result = demo_backtest(config, data) |
|
|
|
|
|
print("\n" + "="*60) |
|
print("🎉 DEMO COMPLETED SUCCESSFULLY!") |
|
print("="*60) |
|
print("\n📋 Summary:") |
|
print(f" ✅ Data Ingestion: {'Working' if data is not None else 'Failed'}") |
|
print(f" ✅ Alpaca Integration: {'Working' if alpaca_broker is not None else 'Simulation Mode'}") |
|
print(f" ✅ FinRL Training: {'Working' if finrl_agent is not None else 'Failed'}") |
|
print(f" ✅ Trading Workflow: {'Working' if workflow_result and workflow_result['success'] else 'Failed'}") |
|
print(f" ✅ Backtesting: {'Working' if backtest_result and backtest_result['success'] else 'Failed'}") |
|
|
|
print("\n🚀 Next Steps:") |
|
print(" 1. Set up your Alpaca API credentials in .env file") |
|
print(" 2. Configure your trading strategy in config.yaml") |
|
print(" 3. Run live trading with: python -m agentic_ai_system.main --mode live") |
|
print(" 4. Monitor performance in logs/ directory") |
|
|
|
except Exception as e: |
|
print(f"❌ Demo failed with error: {e}") |
|
logging.error(f"Demo error: {e}", exc_info=True) |
|
|
|
if __name__ == "__main__": |
|
main() |