Edwin Salguero
feat: comprehensive test suite fixes and improvements
63f74a3
import pandas as pd
import numpy as np
import logging
import os
from typing import Dict, Any, Optional
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
def load_data(config: Dict[str, Any]) -> Optional[pd.DataFrame]:
"""
Load market data based on configuration.
Args:
config: Configuration dictionary
Returns:
DataFrame with market data or None if error
"""
try:
data_source = config['data_source']['type']
logger.info(f"Loading data from source: {data_source}")
if data_source == 'alpaca':
return _load_alpaca_data(config)
elif data_source == 'csv':
return _load_csv_data(config)
elif data_source == 'synthetic':
return _load_synthetic_data(config)
else:
logger.error(f"Unsupported data source: {data_source}")
return None
except Exception as e:
logger.error(f"Error loading data: {e}")
return None
def _load_alpaca_data(config: Dict[str, Any]) -> Optional[pd.DataFrame]:
"""Load market data from Alpaca"""
try:
from .alpaca_broker import AlpacaBroker
# Initialize Alpaca broker
alpaca_broker = AlpacaBroker(config)
# Get symbol and timeframe from config
symbol = config['trading']['symbol']
timeframe = config['trading']['timeframe']
# Convert timeframe to Alpaca format
tf_map = {
'1m': '1Min',
'5m': '5Min',
'15m': '15Min',
'1h': '1Hour',
'1d': '1Day'
}
alpaca_timeframe = tf_map.get(timeframe, '1Min')
# Get market data
data = alpaca_broker.get_market_data(
symbol=symbol,
timeframe=alpaca_timeframe,
limit=1000
)
if data is not None and not data.empty:
logger.info(f"Loaded {len(data)} data points from Alpaca for {symbol}")
return data
else:
logger.error(f"No data returned from Alpaca for {symbol}")
return None
except Exception as e:
logger.error(f"Error loading Alpaca data: {e}")
return None
def _load_csv_data(config: Dict[str, Any]) -> Optional[pd.DataFrame]:
"""Load market data from CSV file"""
try:
file_path = config['data_source']['path']
if not os.path.exists(file_path):
logger.error(f"CSV file not found: {file_path}")
return None
# Load CSV data
data = pd.read_csv(file_path)
# Handle both 'timestamp' and 'date' column names
if 'date' in data.columns and 'timestamp' not in data.columns:
data = data.rename(columns={'date': 'timestamp'})
# Ensure required columns exist
required_columns = ['timestamp', 'open', 'high', 'low', 'close', 'volume']
missing_columns = [col for col in required_columns if col not in data.columns]
if missing_columns:
logger.error(f"Missing required columns: {missing_columns}")
return None
# Convert timestamp to datetime
data['timestamp'] = pd.to_datetime(data['timestamp'])
# Sort by timestamp
data = data.sort_values('timestamp').reset_index(drop=True)
logger.info(f"Loaded {len(data)} data points from CSV: {file_path}")
return data
except Exception as e:
logger.error(f"Error loading CSV data: {e}")
return None
def _load_synthetic_data(config: Dict[str, Any]) -> Optional[pd.DataFrame]:
"""Load or generate synthetic market data"""
try:
synthetic_config = config.get('synthetic_data', {})
data_path = synthetic_config.get('data_path', 'data/synthetic_market_data.csv')
# Check if synthetic data file exists
if os.path.exists(data_path):
logger.info(f"Loading existing synthetic data from: {data_path}")
return _load_csv_data({'data_source': {'path': data_path}})
# Generate new synthetic data
logger.info("Generating new synthetic market data")
from .synthetic_data_generator import SyntheticDataGenerator
generator = SyntheticDataGenerator(config)
data = generator.generate_data()
if data is not None and not data.empty:
# Save generated data
os.makedirs(os.path.dirname(data_path), exist_ok=True)
data.to_csv(data_path, index=False)
logger.info(f"Saved synthetic data to: {data_path}")
return data
else:
logger.error("Failed to generate synthetic data")
return None
except Exception as e:
logger.error(f"Error loading synthetic data: {e}")
return None
def validate_data(data: pd.DataFrame) -> bool:
"""
Validate market data quality.
Args:
data: DataFrame with market data
Returns:
True if data is valid, False otherwise
"""
try:
if data is None or data.empty:
logger.error("Data is None or empty")
return False
# Handle both 'timestamp' and 'date' column names
if 'date' in data.columns and 'timestamp' not in data.columns:
data = data.rename(columns={'date': 'timestamp'})
# Check required columns
required_columns = ['timestamp', 'open', 'high', 'low', 'close', 'volume']
missing_columns = [col for col in required_columns if col not in data.columns]
if missing_columns:
logger.error(f"Missing required columns: {missing_columns}")
return False
# Check for NaN values
nan_counts = data[required_columns].isna().sum()
if nan_counts.sum() > 0:
logger.warning(f"Found NaN values: {nan_counts.to_dict()}")
# Remove rows with NaN values
data.dropna(subset=required_columns, inplace=True)
logger.info(f"Removed {nan_counts.sum()} rows with NaN values")
# Check for negative prices
price_columns = ['open', 'high', 'low', 'close']
negative_prices = data[price_columns] < 0
if negative_prices.any().any():
logger.error("Found negative prices in data")
return False
# Check for zero volumes
zero_volumes = data['volume'] == 0
if zero_volumes.sum() > len(data) * 0.5: # More than 50% zero volumes
logger.warning("High percentage of zero volumes detected")
# Check OHLC consistency
invalid_ohlc = (
(data['high'] < data['low']) |
(data['open'] > data['high']) |
(data['close'] > data['high']) |
(data['open'] < data['low']) |
(data['close'] < data['low'])
)
if invalid_ohlc.any():
logger.error("Found invalid OHLC relationships")
return False
# Check timestamp consistency
if 'timestamp' in data.columns:
timestamps = pd.to_datetime(data['timestamp'])
if not timestamps.is_monotonic_increasing:
logger.warning("Timestamps are not in ascending order")
data = data.sort_values('timestamp').reset_index(drop=True)
logger.info(f"Data validation passed: {len(data)} valid records")
return True
except Exception as e:
logger.error(f"Error validating data: {e}")
return False
def add_technical_indicators(data: pd.DataFrame) -> pd.DataFrame:
"""
Add technical indicators to market data.
Args:
data: DataFrame with OHLCV data
Returns:
DataFrame with technical indicators added
"""
try:
df = data.copy()
# Simple Moving Averages
df['sma_20'] = df['close'].rolling(window=20).mean()
df['sma_50'] = df['close'].rolling(window=50).mean()
df['sma_200'] = df['close'].rolling(window=200).mean()
# Exponential Moving Averages
df['ema_12'] = df['close'].ewm(span=12).mean()
df['ema_26'] = df['close'].ewm(span=26).mean()
# MACD
df['macd'] = df['ema_12'] - df['ema_26']
df['macd_signal'] = df['macd'].ewm(span=9).mean()
df['macd_histogram'] = df['macd'] - df['macd_signal']
# RSI
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['rsi'] = 100 - (100 / (1 + rs))
# Bollinger Bands
df['bb_middle'] = df['close'].rolling(window=20).mean()
bb_std = df['close'].rolling(window=20).std()
df['bb_upper'] = df['bb_middle'] + (bb_std * 2)
df['bb_lower'] = df['bb_middle'] - (bb_std * 2)
# Average True Range (ATR)
high_low = df['high'] - df['low']
high_close = np.abs(df['high'] - df['close'].shift())
low_close = np.abs(df['low'] - df['close'].shift())
true_range = np.maximum(high_low, np.maximum(high_close, low_close))
df['atr'] = true_range.rolling(window=14).mean()
# Volume indicators
df['volume_sma'] = df['volume'].rolling(window=20).mean()
df['volume_ratio'] = df['volume'] / df['volume_sma']
# Price momentum
df['price_change'] = df['close'].pct_change()
df['price_change_5'] = df['close'].pct_change(periods=5)
df['price_change_20'] = df['close'].pct_change(periods=20)
logger.info("Technical indicators added successfully")
return df
except Exception as e:
logger.error(f"Error adding technical indicators: {e}")
return data
def get_latest_data(data: pd.DataFrame, n_periods: int = 100) -> pd.DataFrame:
"""
Get the latest n periods of data.
Args:
data: DataFrame with market data
n_periods: Number of periods to return
Returns:
DataFrame with latest n periods
"""
try:
if len(data) <= n_periods:
return data
return data.tail(n_periods).reset_index(drop=True)
except Exception as e:
logger.error(f"Error getting latest data: {e}")
return data