File size: 30,054 Bytes
9f44dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaa6e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f44dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaa6e1c
 
 
 
9f44dc9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
"""
Streamlit UI for Algorithmic Trading System

A comprehensive web interface for:
- Real-time market data visualization
- Trading strategy configuration
- FinRL model training and evaluation
- Portfolio management
- Risk monitoring
"""

import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
import yaml
import os
import sys
from datetime import datetime, timedelta
from typing import Dict, Any, Optional
import asyncio
import threading
import time

# Add project root to path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# Import with error handling for deployment
try:
    from agentic_ai_system.main import load_config
    from agentic_ai_system.data_ingestion import load_data, validate_data, add_technical_indicators
    from agentic_ai_system.finrl_agent import FinRLAgent, FinRLConfig
    from agentic_ai_system.alpaca_broker import AlpacaBroker
    from agentic_ai_system.orchestrator import run_backtest, run_live_trading
    DEPLOYMENT_MODE = False
except ImportError as e:
    st.warning(f"⚠️ Some modules not available in deployment mode: {e}")
    DEPLOYMENT_MODE = True
    
    # Mock functions for deployment
    def load_config(config_file):
        return {
            'trading': {'symbol': 'AAPL', 'capital': 100000, 'timeframe': '1d'},
            'execution': {'broker_api': 'alpaca_paper'},
            'finrl': {'algorithm': 'PPO'},
            'risk': {'max_drawdown': 0.1}
        }
    
    def load_data(config):
        # Generate sample data for deployment
        dates = pd.date_range(start='2023-01-01', end='2023-12-31', freq='D')
        np.random.seed(42)
        prices = 150 + np.cumsum(np.random.randn(len(dates)) * 0.5)
        
        data = pd.DataFrame({
            'timestamp': dates,
            'open': prices * 0.99,
            'high': prices * 1.02,
            'low': prices * 0.98,
            'close': prices,
            'volume': np.random.randint(1000000, 5000000, len(dates))
        })
        return data
    
    def add_technical_indicators(data):
        data['sma_20'] = data['close'].rolling(window=20).mean()
        data['sma_50'] = data['close'].rolling(window=50).mean()
        return data
    
    class FinRLAgent:
        def __init__(self, config):
            self.config = config
        
        def train(self, data, config, total_timesteps, use_real_broker=False):
            return {'success': True, 'message': 'Training completed (demo mode)'}
    
    class FinRLConfig:
        def __init__(self, **kwargs):
            for key, value in kwargs.items():
                setattr(self, key, value)
    
    class AlpacaBroker:
        def __init__(self, config):
            self.config = config
        
        def get_account_info(self):
            return {
                'portfolio_value': 100000,
                'equity': 102500,
                'cash': 50000,
                'buying_power': 50000
            }
        
        def get_positions(self):
            return []
    
    def run_backtest(config, data):
        return {
            'success': True,
            'total_return': 0.025,
            'sharpe_ratio': 1.2,
            'max_drawdown': 0.05,
            'total_trades': 15
        }
    
    def run_live_trading(config, data):
        return {'success': True, 'message': 'Live trading started (demo mode)'}

# Page configuration
st.set_page_config(
    page_title="Algorithmic Trading System",
    page_icon="πŸ“ˆ",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better styling
st.markdown("""
<style>
    .main-header {
        font-size: 2.5rem;
        font-weight: bold;
        color: #1f77b4;
        text-align: center;
        margin-bottom: 2rem;
    }
    .metric-card {
        background-color: #f0f2f6;
        padding: 1rem;
        border-radius: 0.5rem;
        border-left: 4px solid #1f77b4;
    }
    .success-metric {
        border-left-color: #28a745;
    }
    .warning-metric {
        border-left-color: #ffc107;
    }
    .danger-metric {
        border-left-color: #dc3545;
    }
    .sidebar .sidebar-content {
        background-color: #f8f9fa;
    }
</style>
""", unsafe_allow_html=True)

class TradingUI:
    def __init__(self):
        self.config = None
        self.data = None
        self.alpaca_broker = None
        self.finrl_agent = None
        self.session_state = st.session_state
        
        # Initialize session state
        if 'trading_active' not in self.session_state:
            self.session_state.trading_active = False
        if 'current_portfolio' not in self.session_state:
            self.session_state.current_portfolio = {}
        if 'trading_history' not in self.session_state:
            self.session_state.trading_history = []
    
    def load_configuration(self):
        """Load and display configuration"""
        st.sidebar.header("βš™οΈ Configuration")
        
        # Config file selector
        config_files = [f for f in os.listdir('.') if f.endswith('.yaml') or f.endswith('.yml')]
        selected_config = st.sidebar.selectbox(
            "Select Configuration File",
            config_files,
            index=0 if 'config.yaml' in config_files else 0
        )
        
        if st.sidebar.button("Load Configuration"):
            try:
                self.config = load_config(selected_config)
                st.sidebar.success(f"βœ… Configuration loaded: {selected_config}")
                return True
            except Exception as e:
                st.sidebar.error(f"❌ Error loading config: {e}")
                return False
        
        return False
    
    def display_system_status(self):
        """Display system status and metrics"""
        st.header("πŸ“Š System Status")
        
        col1, col2, col3, col4 = st.columns(4)
        
        with col1:
            st.metric(
                label="Trading Status",
                value="🟒 Active" if self.session_state.trading_active else "πŸ”΄ Inactive",
                delta="Running" if self.session_state.trading_active else "Stopped"
            )
        
        with col2:
            if self.config:
                st.metric(
                    label="Capital",
                    value=f"${self.config['trading']['capital']:,}",
                    delta="Available"
                )
            else:
                st.metric(label="Capital", value="Not Loaded")
        
        with col3:
            if self.alpaca_broker:
                try:
                    account_info = self.alpaca_broker.get_account_info()
                    if account_info:
                        st.metric(
                            label="Portfolio Value",
                            value=f"${float(account_info['portfolio_value']):,.2f}",
                            delta=f"{float(account_info['equity']) - float(account_info['portfolio_value']):,.2f}"
                        )
                except:
                    st.metric(label="Portfolio Value", value="Not Connected")
            else:
                st.metric(label="Portfolio Value", value="Not Connected")
        
        with col4:
            if self.data is not None:
                st.metric(
                    label="Data Points",
                    value=f"{len(self.data):,}",
                    delta=f"Latest: {self.data['timestamp'].max().strftime('%Y-%m-%d')}"
                )
            else:
                st.metric(label="Data Points", value="Not Loaded")
    
    def data_ingestion_panel(self):
        """Data ingestion and visualization panel"""
        st.header("πŸ“₯ Data Ingestion")
        
        col1, col2 = st.columns([2, 1])
        
        with col1:
            if self.config:
                if st.button("Load Market Data"):
                    with st.spinner("Loading data..."):
                        try:
                            self.data = load_data(self.config)
                            if self.data is not None and not self.data.empty:
                                st.success(f"βœ… Loaded {len(self.data)} data points")
                                
                                # Add technical indicators
                                self.data = add_technical_indicators(self.data)
                                st.info(f"βœ… Added technical indicators")
                            else:
                                st.error("❌ Failed to load data")
                        except Exception as e:
                            st.error(f"❌ Error loading data: {e}")
        
        with col2:
            if self.data is not None:
                st.subheader("Data Summary")
                st.write(f"**Symbol:** {self.config['trading']['symbol']}")
                st.write(f"**Timeframe:** {self.config['trading']['timeframe']}")
                st.write(f"**Date Range:** {self.data['timestamp'].min().strftime('%Y-%m-%d')} to {self.data['timestamp'].max().strftime('%Y-%m-%d')}")
                st.write(f"**Price Range:** ${self.data['close'].min():.2f} - ${self.data['close'].max():.2f}")
        
        # Data visualization
        if self.data is not None:
            st.subheader("πŸ“ˆ Market Data Visualization")
            
            # Chart type selector
            chart_type = st.selectbox(
                "Chart Type",
                ["Candlestick", "Line", "OHLC", "Volume"]
            )
            
            if chart_type == "Candlestick":
                fig = go.Figure(data=[go.Candlestick(
                    x=self.data['timestamp'],
                    open=self.data['open'],
                    high=self.data['high'],
                    low=self.data['low'],
                    close=self.data['close']
                )])
                fig.update_layout(
                    title=f"{self.config['trading']['symbol']} Candlestick Chart",
                    xaxis_title="Date",
                    yaxis_title="Price ($)",
                    height=500
                )
                st.plotly_chart(fig, use_container_width=True)
            
            elif chart_type == "Line":
                fig = px.line(self.data, x='timestamp', y='close', 
                             title=f"{self.config['trading']['symbol']} Price Chart")
                fig.update_layout(height=500)
                st.plotly_chart(fig, use_container_width=True)
            
            elif chart_type == "Volume":
                fig = go.Figure()
                fig.add_trace(go.Bar(
                    x=self.data['timestamp'],
                    y=self.data['volume'],
                    name='Volume'
                ))
                fig.update_layout(
                    title=f"{self.config['trading']['symbol']} Volume Chart",
                    xaxis_title="Date",
                    yaxis_title="Volume",
                    height=500
                )
                st.plotly_chart(fig, use_container_width=True)
    
    def alpaca_integration_panel(self):
        """Alpaca broker integration panel"""
        st.header("🏦 Alpaca Integration")
        
        col1, col2 = st.columns([1, 1])
        
        with col1:
            if st.button("Connect to Alpaca"):
                if self.config and self.config['execution']['broker_api'] in ['alpaca_paper', 'alpaca_live']:
                    with st.spinner("Connecting to Alpaca..."):
                        try:
                            self.alpaca_broker = AlpacaBroker(self.config)
                            account_info = self.alpaca_broker.get_account_info()
                            if account_info:
                                st.success("βœ… Connected to Alpaca")
                                self.session_state.alpaca_connected = True
                            else:
                                st.error("❌ Failed to connect to Alpaca")
                        except Exception as e:
                            st.error(f"❌ Connection error: {e}")
                else:
                    st.warning("⚠️ Alpaca not configured in settings")
        
        with col2:
            if st.button("Disconnect from Alpaca"):
                self.alpaca_broker = None
                self.session_state.alpaca_connected = False
                st.success("βœ… Disconnected from Alpaca")
        
        # Account information display
        if self.alpaca_broker:
            st.subheader("Account Information")
            
            try:
                account_info = self.alpaca_broker.get_account_info()
                if account_info:
                    col1, col2, col3 = st.columns(3)
                    
                    with col1:
                        st.metric(
                            label="Buying Power",
                            value=f"${float(account_info['buying_power']):,.2f}"
                        )
                    
                    with col2:
                        st.metric(
                            label="Portfolio Value",
                            value=f"${float(account_info['portfolio_value']):,.2f}"
                        )
                    
                    with col3:
                        st.metric(
                            label="Equity",
                            value=f"${float(account_info['equity']):,.2f}"
                        )
                    
                    # Market hours
                    market_hours = self.alpaca_broker.get_market_hours()
                    if market_hours:
                        status_color = "🟒" if market_hours['is_open'] else "πŸ”΄"
                        st.info(f"{status_color} Market Status: {'OPEN' if market_hours['is_open'] else 'CLOSED'}")
                        
                        if market_hours['next_open']:
                            st.write(f"Next Open: {market_hours['next_open']}")
                        if market_hours['next_close']:
                            st.write(f"Next Close: {market_hours['next_close']}")
                
                # Current positions
                positions = self.alpaca_broker.get_positions()
                if positions:
                    st.subheader("Current Positions")
                    positions_df = pd.DataFrame(positions)
                    st.dataframe(positions_df)
                else:
                    st.info("No current positions")
                    
            except Exception as e:
                st.error(f"Error fetching account info: {e}")
    
    def finrl_training_panel(self):
        """FinRL model training panel"""
        st.header("🧠 FinRL Model Training")
        
        if not self.data is not None:
            st.warning("⚠️ Please load market data first")
            return
        
        col1, col2 = st.columns([2, 1])
        
        with col1:
            st.subheader("Training Configuration")
            
            # Training parameters
            algorithm = st.selectbox(
                "Algorithm",
                ["PPO", "A2C", "DDPG", "TD3"],
                index=0
            )
            
            learning_rate = st.slider(
                "Learning Rate",
                min_value=0.0001,
                max_value=0.01,
                value=0.0003,
                step=0.0001,
                format="%.4f"
            )
            
            total_timesteps = st.slider(
                "Total Timesteps",
                min_value=1000,
                max_value=1000000,
                value=100000,
                step=1000
            )
            
            batch_size = st.selectbox(
                "Batch Size",
                [32, 64, 128, 256],
                index=1
            )
        
        with col2:
            st.subheader("Training Controls")
            
            if st.button("Start Training", type="primary"):
                if self.data is not None:
                    with st.spinner("Training FinRL model..."):
                        try:
                            # Create FinRL config
                            finrl_config = FinRLConfig(
                                algorithm=algorithm,
                                learning_rate=learning_rate,
                                batch_size=batch_size,
                                buffer_size=1000000,
                                learning_starts=100,
                                gamma=0.99,
                                tau=0.005,
                                train_freq=1,
                                gradient_steps=1,
                                verbose=1,
                                tensorboard_log='logs/finrl_tensorboard'
                            )
                            
                            # Initialize agent
                            self.finrl_agent = FinRLAgent(finrl_config)
                            
                            # Train the agent
                            result = self.finrl_agent.train(
                                data=self.data,
                                config=self.config,
                                total_timesteps=total_timesteps,
                                use_real_broker=False
                            )
                            
                            if result['success']:
                                st.success("βœ… Training completed successfully!")
                                st.write(f"Model saved: {result['model_path']}")
                                self.session_state.model_trained = True
                            else:
                                st.error("❌ Training failed")
                                
                        except Exception as e:
                            st.error(f"❌ Training error: {e}")
        
        # Training progress and metrics
        if hasattr(self.session_state, 'model_trained') and self.session_state.model_trained:
            st.subheader("Model Performance")
            
            if st.button("Evaluate Model"):
                if self.finrl_agent:
                    with st.spinner("Evaluating model..."):
                        try:
                            # Use last 100 data points for evaluation
                            eval_data = self.data.tail(100)
                            prediction_result = self.finrl_agent.predict(
                                data=eval_data,
                                config=self.config,
                                use_real_broker=False
                            )
                            
                            if prediction_result['success']:
                                col1, col2, col3 = st.columns(3)
                                
                                with col1:
                                    st.metric(
                                        label="Initial Value",
                                        value=f"${prediction_result['initial_value']:,.2f}"
                                    )
                                
                                with col2:
                                    st.metric(
                                        label="Final Value",
                                        value=f"${prediction_result['final_value']:,.2f}"
                                    )
                                
                                with col3:
                                    return_pct = prediction_result['total_return'] * 100
                                    st.metric(
                                        label="Total Return",
                                        value=f"{return_pct:.2f}%",
                                        delta=f"{return_pct:.2f}%"
                                    )
                                
                                st.write(f"Total Trades: {prediction_result['total_trades']}")
                            else:
                                st.error("❌ Model evaluation failed")
                                
                        except Exception as e:
                            st.error(f"❌ Evaluation error: {e}")
    
    def trading_controls_panel(self):
        """Trading controls and execution panel"""
        st.header("🎯 Trading Controls")
        
        col1, col2 = st.columns([1, 1])
        
        with col1:
            st.subheader("Backtesting")
            
            if st.button("Run Backtest"):
                if self.data is not None and self.config:
                    with st.spinner("Running backtest..."):
                        try:
                            result = run_backtest(self.config, self.data)
                            if result['success']:
                                st.success("βœ… Backtest completed")
                                
                                # Display backtest results
                                col1, col2, col3 = st.columns(3)
                                
                                with col1:
                                    st.metric(
                                        label="Total Return",
                                        value=f"{result['total_return']:.2%}"
                                    )
                                
                                with col2:
                                    st.metric(
                                        label="Sharpe Ratio",
                                        value=f"{result['sharpe_ratio']:.2f}"
                                    )
                                
                                with col3:
                                    st.metric(
                                        label="Max Drawdown",
                                        value=f"{result['max_drawdown']:.2%}"
                                    )
                                
                                # Store results in session state
                                self.session_state.backtest_results = result
                            else:
                                st.error("❌ Backtest failed")
                                
                        except Exception as e:
                            st.error(f"❌ Backtest error: {e}")
        
        with col2:
            st.subheader("Live Trading")
            
            if st.button("Start Live Trading", type="primary"):
                if self.config and self.alpaca_broker:
                    self.session_state.trading_active = True
                    st.success("βœ… Live trading started")
                    
                    # Start trading in background thread
                    def run_trading():
                        try:
                            run_live_trading(self.config, self.data)
                        except Exception as e:
                            st.error(f"Trading error: {e}")
                    
                    trading_thread = threading.Thread(target=run_trading)
                    trading_thread.daemon = True
                    trading_thread.start()
                else:
                    st.warning("⚠️ Please configure Alpaca connection first")
            
            if st.button("Stop Live Trading"):
                self.session_state.trading_active = False
                st.success("βœ… Live trading stopped")
    
    def portfolio_monitoring_panel(self):
        """Portfolio monitoring and analytics panel"""
        st.header("πŸ“Š Portfolio Monitoring")
        
        if not self.alpaca_broker:
            st.warning("⚠️ Connect to Alpaca to view portfolio")
            return
        
        try:
            # Portfolio overview
            account_info = self.alpaca_broker.get_account_info()
            if account_info:
                col1, col2, col3, col4 = st.columns(4)
                
                with col1:
                    st.metric(
                        label="Total Value",
                        value=f"${float(account_info['portfolio_value']):,.2f}"
                    )
                
                with col2:
                    st.metric(
                        label="Cash",
                        value=f"${float(account_info['cash']):,.2f}"
                    )
                
                with col3:
                    st.metric(
                        label="Buying Power",
                        value=f"${float(account_info['buying_power']):,.2f}"
                    )
                
                with col4:
                    equity = float(account_info['equity'])
                    portfolio_value = float(account_info['portfolio_value'])
                    pnl = equity - portfolio_value
                    st.metric(
                        label="P&L",
                        value=f"${pnl:,.2f}",
                        delta=f"{pnl:,.2f}"
                    )
            
            # Positions table
            positions = self.alpaca_broker.get_positions()
            if positions:
                st.subheader("Current Positions")
                
                positions_df = pd.DataFrame(positions)
                if not positions_df.empty:
                    # Calculate additional metrics
                    positions_df['market_value'] = positions_df['quantity'].astype(float) * positions_df['current_price'].astype(float)
                    positions_df['unrealized_pl'] = positions_df['unrealized_pl'].astype(float)
                    positions_df['unrealized_plpc'] = positions_df['unrealized_plpc'].astype(float)
                    
                    # Display positions
                    st.dataframe(
                        positions_df[['symbol', 'quantity', 'current_price', 'market_value', 'unrealized_pl', 'unrealized_plpc']],
                        use_container_width=True
                    )
                    
                    # Position chart
                    fig = px.pie(
                        positions_df, 
                        values='market_value', 
                        names='symbol',
                        title="Portfolio Allocation"
                    )
                    st.plotly_chart(fig, use_container_width=True)
                else:
                    st.info("No positions found")
            else:
                st.info("No current positions")
                
        except Exception as e:
            st.error(f"Error fetching portfolio data: {e}")
    
    def run(self):
        """Main UI application"""
        # Header
        st.markdown('<h1 class="main-header">πŸ€– Algorithmic Trading System</h1>', unsafe_allow_html=True)
        
        # Load configuration
        if self.load_configuration():
            self.config = load_config('config.yaml')
        
        # Sidebar navigation
        st.sidebar.title("Navigation")
        page = st.sidebar.selectbox(
            "Select Page",
            ["Dashboard", "Data Ingestion", "Alpaca Integration", "FinRL Training", "Trading Controls", "Portfolio Monitoring"]
        )
        
        # Display system status
        self.display_system_status()
        
        # Page routing
        if page == "Dashboard":
            st.header("πŸ“Š Dashboard")
            
            if self.config:
                st.subheader("System Configuration")
                config_col1, config_col2 = st.columns(2)
                
                with config_col1:
                    st.write(f"**Symbol:** {self.config['trading']['symbol']}")
                    st.write(f"**Capital:** ${self.config['trading']['capital']:,}")
                    st.write(f"**Timeframe:** {self.config['trading']['timeframe']}")
                
                with config_col2:
                    st.write(f"**Broker:** {self.config['execution']['broker_api']}")
                    st.write(f"**FinRL Algorithm:** {self.config['finrl']['algorithm']}")
                    st.write(f"**Risk Max Drawdown:** {self.config['risk']['max_drawdown']:.1%}")
            
            # Quick actions
            st.subheader("Quick Actions")
            col1, col2, col3 = st.columns(3)
            
            with col1:
                if st.button("Load Data", type="primary"):
                    if self.config:
                        with st.spinner("Loading data..."):
                            self.data = load_data(self.config)
                            if self.data is not None:
                                st.success("βœ… Data loaded successfully")
            
            with col2:
                if st.button("Connect Alpaca"):
                    if self.config and self.config['execution']['broker_api'] in ['alpaca_paper', 'alpaca_live']:
                        with st.spinner("Connecting..."):
                            self.alpaca_broker = AlpacaBroker(self.config)
                            st.success("βœ… Connected to Alpaca")
            
            with col3:
                if st.button("Start Training"):
                    if self.data is not None:
                        st.info("Navigate to FinRL Training page to configure and start training")
        
        elif page == "Data Ingestion":
            self.data_ingestion_panel()
        
        elif page == "Alpaca Integration":
            self.alpaca_integration_panel()
        
        elif page == "FinRL Training":
            self.finrl_training_panel()
        
        elif page == "Trading Controls":
            self.trading_controls_panel()
        
        elif page == "Portfolio Monitoring":
            self.portfolio_monitoring_panel()

def main():
    """Main application entry point"""
    ui = TradingUI()
    ui.run()

def create_streamlit_app():
    """Create and return a Streamlit trading application"""
    return TradingUI()

if __name__ == "__main__":
    main()