File size: 10,754 Bytes
9f44dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# UI Integration Guide

This guide covers the comprehensive UI system for the Algorithmic Trading project, providing multiple interface options for different use cases.

## 🎯 UI Options Overview

### 1. **Streamlit UI** - Quick Prototyping
- **Best for**: Data scientists, quick experiments, rapid prototyping
- **Features**: Interactive widgets, real-time data visualization, easy configuration
- **Port**: 8501
- **URL**: http://localhost:8501

### 2. **Dash UI** - Enterprise Dashboards
- **Best for**: Production dashboards, real-time monitoring, complex analytics
- **Features**: Advanced charts, real-time updates, professional styling
- **Port**: 8050
- **URL**: http://localhost:8050

### 3. **Jupyter UI** - Interactive Notebooks
- **Best for**: Research, experimentation, educational purposes
- **Features**: Interactive widgets, code execution, rich documentation
- **Port**: 8888
- **URL**: http://localhost:8888

### 4. **WebSocket Server** - Real-time Data
- **Best for**: Real-time trading signals, live data streaming
- **Features**: WebSocket API, real-time updates, trading signals
- **Port**: 8765
- **URL**: ws://localhost:8765

## πŸš€ Quick Start

### Prerequisites
```bash
# Install UI dependencies
pip install -r requirements.txt

# Verify installation
python -c "import streamlit, dash, plotly, ipywidgets; print('βœ… All UI dependencies installed')"
```

### Launch Individual UIs

#### Streamlit (Recommended for beginners)
```bash
python ui_launcher.py streamlit
```

#### Dash (Recommended for production)
```bash
python ui_launcher.py dash
```

#### Jupyter Lab
```bash
python ui_launcher.py jupyter
```

#### WebSocket Server
```bash
python ui_launcher.py websocket
```

#### Launch All UIs
```bash
python ui_launcher.py all
```

## πŸ“Š Streamlit UI Features

### Dashboard
- **System Status**: Real-time trading status, portfolio value, P&L
- **Configuration Management**: Load and modify trading parameters
- **Quick Actions**: One-click data loading, Alpaca connection, model training

### Data Ingestion
- **Multiple Sources**: CSV, Alpaca API, Synthetic data
- **Data Validation**: Automatic data quality checks
- **Technical Indicators**: Automatic calculation of moving averages, RSI, MACD
- **Interactive Charts**: Candlestick, line, volume charts with Plotly

### Alpaca Integration
- **Account Connection**: Secure API key management
- **Market Status**: Real-time market hours and status
- **Position Monitoring**: Current positions and portfolio value
- **Order Management**: Buy/sell order execution

### FinRL Training
- **Algorithm Selection**: PPO, A2C, DDPG, TD3
- **Hyperparameter Tuning**: Learning rate, batch size, training steps
- **Training Progress**: Real-time training metrics and progress
- **Model Evaluation**: Performance metrics and backtesting

### Trading Controls
- **Live Trading**: Start/stop live trading with Alpaca
- **Backtesting**: Historical strategy testing
- **Risk Management**: Position sizing and drawdown limits
- **Emergency Stop**: Immediate trading halt

### Portfolio Monitoring
- **Real-time Portfolio**: Live portfolio value and P&L
- **Position Analysis**: Individual position performance
- **Allocation Charts**: Portfolio allocation visualization
- **Risk Metrics**: Sharpe ratio, drawdown analysis

## πŸ“ˆ Dash UI Features

### Enterprise Dashboard
- **Professional Styling**: Bootstrap themes and responsive design
- **Real-time Updates**: Live data streaming and updates
- **Advanced Charts**: Interactive Plotly charts with zoom, pan, hover
- **Multi-page Navigation**: Tabbed interface for different functions

### Advanced Analytics
- **Technical Analysis**: Advanced charting with indicators
- **Performance Metrics**: Comprehensive trading performance analysis
- **Risk Management**: Advanced risk monitoring and alerts
- **Strategy Comparison**: Multiple strategy backtesting and comparison

### Real-time Monitoring
- **Live Trading Activity**: Real-time trade execution monitoring
- **System Alerts**: Automated alerts for important events
- **Portfolio Tracking**: Live portfolio updates and analysis
- **Market Data**: Real-time market data visualization

## πŸ““ Jupyter UI Features

### Interactive Development
- **Widget-based Interface**: Interactive controls for all functions
- **Code Execution**: Direct Python code execution and experimentation
- **Data Exploration**: Interactive data analysis and visualization
- **Model Development**: Iterative model training and testing

### Research Tools
- **Notebook Integration**: Rich documentation and code examples
- **Data Analysis**: Pandas and NumPy integration
- **Visualization**: Matplotlib, Seaborn, Plotly integration
- **Experiment Tracking**: Training history and model comparison

## πŸ”Œ WebSocket API

### Real-time Data Streaming
```javascript
// Connect to WebSocket server
const ws = new WebSocket('ws://localhost:8765');

// Listen for market data updates
ws.onmessage = function(event) {
    const data = JSON.parse(event.data);
    
    if (data.type === 'market_data') {
        console.log('Price:', data.price);
        console.log('Volume:', data.volume);
    }
    
    if (data.type === 'trading_signal') {
        console.log('Signal:', data.signal);
    }
    
    if (data.type === 'portfolio_update') {
        console.log('Portfolio:', data.account);
    }
};
```

### Available Message Types
- `market_data`: Real-time price and volume data
- `trading_signal`: FinRL model trading signals
- `portfolio_update`: Account and position updates
- `trading_status`: Trading system status
- `system_alert`: System alerts and notifications

## πŸ› οΈ Configuration

### Environment Variables
```bash
# Alpaca API credentials
export ALPACA_API_KEY="your_api_key"
export ALPACA_SECRET_KEY="your_secret_key"

# UI configuration
export STREAMLIT_SERVER_PORT=8501
export DASH_SERVER_PORT=8050
export JUPYTER_PORT=8888
export WEBSOCKET_PORT=8765
```

### Configuration File
```yaml
# config.yaml
ui:
  streamlit:
    server_port: 8501
    server_address: "0.0.0.0"
    theme: "light"
  
  dash:
    server_port: 8050
    server_address: "0.0.0.0"
    theme: "bootstrap"
  
  jupyter:
    port: 8888
    ip: "0.0.0.0"
    token: ""
  
  websocket:
    host: "0.0.0.0"
    port: 8765
    max_connections: 100
```

## πŸ”§ Customization

### Adding Custom Charts
```python
# In ui/streamlit_app.py
def create_custom_chart(data):
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=data['timestamp'],
        y=data['custom_indicator'],
        name='Custom Indicator'
    ))
    return fig
```

### Custom Trading Strategies
```python
# In ui/dash_app.py
def custom_strategy(data, config):
    # Implement your custom strategy
    signals = []
    for i in range(len(data)):
        if data['sma_20'][i] > data['sma_50'][i]:
            signals.append('BUY')
        else:
            signals.append('SELL')
    return signals
```

### WebSocket Custom Messages
```python
# In ui/websocket_server.py
async def broadcast_custom_message(self, message_type, data):
    message = {
        "type": message_type,
        "timestamp": datetime.now().isoformat(),
        "data": data
    }
    await self.broadcast(message)
```

## πŸš€ Deployment

### Docker Deployment
```bash
# Build UI-enabled Docker image
docker build -t trading-ui .

# Run with UI ports exposed
docker run -p 8501:8501 -p 8050:8050 -p 8888:8888 -p 8765:8765 trading-ui
```

### Production Deployment
```bash
# Using Gunicorn for production
pip install gunicorn

# Start Dash app with Gunicorn
gunicorn -w 4 -b 0.0.0.0:8050 ui.dash_app:app

# Start Streamlit with production settings
streamlit run ui/streamlit_app.py --server.port 8501 --server.address 0.0.0.0
```

### Cloud Deployment
```bash
# Deploy to Heroku
heroku create trading-ui-app
git push heroku main

# Deploy to AWS
aws ecs create-service --cluster trading-cluster --service-name trading-ui
```

## πŸ” Troubleshooting

### Common Issues

#### Port Already in Use
```bash
# Find process using port
lsof -i :8501

# Kill process
kill -9 <PID>

# Or use different port
python ui_launcher.py streamlit --port 8502
```

#### Missing Dependencies
```bash
# Install missing packages
pip install streamlit dash plotly ipywidgets

# Or reinstall all requirements
pip install -r requirements.txt
```

#### Alpaca Connection Issues
```bash
# Check API credentials
echo $ALPACA_API_KEY
echo $ALPACA_SECRET_KEY

# Test connection
python -c "from agentic_ai_system.alpaca_broker import AlpacaBroker; print('Connection test')"
```

### Debug Mode
```bash
# Enable debug logging
export LOG_LEVEL=DEBUG

# Run with debug output
python ui_launcher.py streamlit --debug
```

## πŸ“š API Reference

### Streamlit Functions
- `create_streamlit_app()`: Create Streamlit application
- `TradingUI.run()`: Run the main UI application
- `load_configuration()`: Load trading configuration
- `display_system_status()`: Show system status

### Dash Functions
- `create_dash_app()`: Create Dash application
- `TradingDashApp.setup_layout()`: Setup dashboard layout
- `TradingDashApp.setup_callbacks()`: Setup interactive callbacks

### Jupyter Functions
- `create_jupyter_interface()`: Create Jupyter interface
- `TradingJupyterUI.display_interface()`: Display interactive widgets
- `TradingJupyterUI.update_chart()`: Update chart displays

### WebSocket Functions
- `create_websocket_server()`: Create WebSocket server
- `TradingWebSocketServer.broadcast()`: Broadcast messages
- `TradingWebSocketServer.handle_client_message()`: Handle client messages

## 🀝 Contributing

### Adding New UI Features
1. Create feature branch: `git checkout -b feature/new-ui-feature`
2. Implement feature in appropriate UI module
3. Add tests in `tests/ui/` directory
4. Update documentation
5. Submit pull request

### UI Development Guidelines
- Follow PEP 8 style guidelines
- Add type hints for all functions
- Include docstrings for all classes and methods
- Write unit tests for new features
- Update documentation for new features

## πŸ“ž Support

For UI-related issues:
1. Check the troubleshooting section
2. Review the logs in `logs/ui/` directory
3. Create an issue on GitHub with detailed error information
4. Include system information and error logs

## πŸ”„ Updates

### UI Version History
- **v1.0.0**: Initial UI implementation with Streamlit, Dash, Jupyter, and WebSocket
- **v1.1.0**: Added real-time data streaming and advanced charts
- **v1.2.0**: Enhanced portfolio monitoring and risk management
- **v1.3.0**: Added custom strategy development tools

### Upcoming Features
- **v1.4.0**: Machine learning model visualization
- **v1.5.0**: Advanced backtesting interface
- **v1.6.0**: Multi-asset portfolio management
- **v1.7.0**: Social trading features