Delete README_hf.md
Browse files- README_hf.md +0 -167
README_hf.md
DELETED
@@ -1,167 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
tags:
|
5 |
-
- computer-vision
|
6 |
-
- segmentation
|
7 |
-
- few-shot-learning
|
8 |
-
- zero-shot-learning
|
9 |
-
- sam2
|
10 |
-
- clip
|
11 |
-
- pytorch
|
12 |
-
license: apache-2.0
|
13 |
-
datasets:
|
14 |
-
- custom
|
15 |
-
metrics:
|
16 |
-
- iou
|
17 |
-
- dice
|
18 |
-
- precision
|
19 |
-
- recall
|
20 |
-
library_name: pytorch
|
21 |
-
pipeline_tag: image-segmentation
|
22 |
-
---
|
23 |
-
|
24 |
-
# SAM 2 Few-Shot/Zero-Shot Segmentation
|
25 |
-
|
26 |
-
This repository contains a comprehensive research framework for combining Segment Anything Model 2 (SAM 2) with few-shot and zero-shot learning techniques for domain-specific segmentation tasks.
|
27 |
-
|
28 |
-
## 🎯 Overview
|
29 |
-
|
30 |
-
This project investigates how minimal supervision can adapt SAM 2 to new object categories across three distinct domains:
|
31 |
-
- **Satellite Imagery**: Buildings, roads, vegetation, water
|
32 |
-
- **Fashion**: Shirts, pants, dresses, shoes
|
33 |
-
- **Robotics**: Robots, tools, safety equipment
|
34 |
-
|
35 |
-
## 🏗️ Architecture
|
36 |
-
|
37 |
-
### Few-Shot Learning Framework
|
38 |
-
- **Memory Bank**: Stores CLIP-encoded examples for each class
|
39 |
-
- **Similarity-Based Prompting**: Uses visual similarity to generate SAM 2 prompts
|
40 |
-
- **Episodic Training**: Standard few-shot learning protocol
|
41 |
-
|
42 |
-
### Zero-Shot Learning Framework
|
43 |
-
- **Advanced Prompt Engineering**: 4 strategies (basic, descriptive, contextual, detailed)
|
44 |
-
- **Attention-Based Localization**: Uses CLIP's cross-attention for prompt generation
|
45 |
-
- **Multi-Strategy Prompting**: Combines different prompt types
|
46 |
-
|
47 |
-
## 📊 Performance
|
48 |
-
|
49 |
-
### Few-Shot Learning (5 shots)
|
50 |
-
| Domain | Mean IoU | Mean Dice | Best Class | Worst Class |
|
51 |
-
|--------|----------|-----------|------------|-------------|
|
52 |
-
| Satellite | 65% | 71% | Building (78%) | Water (52%) |
|
53 |
-
| Fashion | 62% | 68% | Shirt (75%) | Shoes (48%) |
|
54 |
-
| Robotics | 59% | 65% | Robot (72%) | Safety (45%) |
|
55 |
-
|
56 |
-
### Zero-Shot Learning (Best Strategy)
|
57 |
-
| Domain | Mean IoU | Mean Dice | Best Class | Worst Class |
|
58 |
-
|--------|----------|-----------|------------|-------------|
|
59 |
-
| Satellite | 42% | 48% | Building (62%) | Water (28%) |
|
60 |
-
| Fashion | 38% | 45% | Shirt (58%) | Shoes (25%) |
|
61 |
-
| Robotics | 35% | 42% | Robot (55%) | Safety (22%) |
|
62 |
-
|
63 |
-
## 🚀 Quick Start
|
64 |
-
|
65 |
-
### Installation
|
66 |
-
```bash
|
67 |
-
pip install -r requirements.txt
|
68 |
-
python scripts/download_sam2.py
|
69 |
-
```
|
70 |
-
|
71 |
-
### Few-Shot Experiment
|
72 |
-
```python
|
73 |
-
from models.sam2_fewshot import SAM2FewShot
|
74 |
-
|
75 |
-
# Initialize model
|
76 |
-
model = SAM2FewShot(
|
77 |
-
sam2_checkpoint="sam2_checkpoint",
|
78 |
-
device="cuda"
|
79 |
-
)
|
80 |
-
|
81 |
-
# Add support examples
|
82 |
-
model.add_few_shot_example("satellite", "building", image, mask)
|
83 |
-
|
84 |
-
# Perform segmentation
|
85 |
-
predictions = model.segment(
|
86 |
-
query_image,
|
87 |
-
"satellite",
|
88 |
-
["building"],
|
89 |
-
use_few_shot=True
|
90 |
-
)
|
91 |
-
```
|
92 |
-
|
93 |
-
### Zero-Shot Experiment
|
94 |
-
```python
|
95 |
-
from models.sam2_zeroshot import SAM2ZeroShot
|
96 |
-
|
97 |
-
# Initialize model
|
98 |
-
model = SAM2ZeroShot(
|
99 |
-
sam2_checkpoint="sam2_checkpoint",
|
100 |
-
device="cuda"
|
101 |
-
)
|
102 |
-
|
103 |
-
# Perform zero-shot segmentation
|
104 |
-
predictions = model.segment(
|
105 |
-
image,
|
106 |
-
"fashion",
|
107 |
-
["shirt", "pants", "dress", "shoes"]
|
108 |
-
)
|
109 |
-
```
|
110 |
-
|
111 |
-
## 📁 Project Structure
|
112 |
-
|
113 |
-
```
|
114 |
-
├── models/
|
115 |
-
│ ├── sam2_fewshot.py # Few-shot learning model
|
116 |
-
│ └── sam2_zeroshot.py # Zero-shot learning model
|
117 |
-
├── experiments/
|
118 |
-
│ ├── few_shot_satellite.py # Satellite experiments
|
119 |
-
│ └── zero_shot_fashion.py # Fashion experiments
|
120 |
-
├── utils/
|
121 |
-
│ ├── data_loader.py # Domain-specific data loaders
|
122 |
-
│ ├── metrics.py # Comprehensive evaluation metrics
|
123 |
-
│ └── visualization.py # Visualization tools
|
124 |
-
├── scripts/
|
125 |
-
│ └── download_sam2.py # Setup script
|
126 |
-
└── notebooks/
|
127 |
-
└── analysis.ipynb # Interactive analysis
|
128 |
-
```
|
129 |
-
|
130 |
-
## 🔬 Research Contributions
|
131 |
-
|
132 |
-
1. **Novel Architecture**: Combines SAM 2 + CLIP for few-shot/zero-shot segmentation
|
133 |
-
2. **Domain-Specific Prompting**: Advanced prompt engineering for different domains
|
134 |
-
3. **Attention-Based Prompt Generation**: Leverages CLIP attention for localization
|
135 |
-
4. **Comprehensive Evaluation**: Extensive experiments across multiple domains
|
136 |
-
5. **Open-Source Implementation**: Complete codebase for reproducibility
|
137 |
-
|
138 |
-
## 📚 Citation
|
139 |
-
|
140 |
-
If you use this work in your research, please cite:
|
141 |
-
|
142 |
-
```bibtex
|
143 |
-
@misc{sam2_fewshot_zeroshot_2024,
|
144 |
-
title={SAM 2 Few-Shot/Zero-Shot Segmentation: Domain Adaptation with Minimal Supervision},
|
145 |
-
author={Your Name},
|
146 |
-
year={2024},
|
147 |
-
url={https://huggingface.co/esalguero/Segmentation}
|
148 |
-
}
|
149 |
-
```
|
150 |
-
|
151 |
-
## 🤝 Contributing
|
152 |
-
|
153 |
-
We welcome contributions! Please feel free to submit issues, pull requests, or suggestions for improvements.
|
154 |
-
|
155 |
-
## 📄 License
|
156 |
-
|
157 |
-
This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.
|
158 |
-
|
159 |
-
## 🔗 Links
|
160 |
-
|
161 |
-
- **GitHub Repository**: [https://github.com/ParallelLLC/Segmentation](https://github.com/ParallelLLC/Segmentation)
|
162 |
-
- **Research Paper**: See `research_paper.md` for complete methodology
|
163 |
-
- **Interactive Analysis**: Use `notebooks/analysis.ipynb` for exploration
|
164 |
-
|
165 |
-
---
|
166 |
-
|
167 |
-
**Keywords**: Few-shot learning, Zero-shot learning, Semantic segmentation, SAM 2, CLIP, Domain adaptation, Computer vision
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|