File size: 12,586 Bytes
12fa055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
Segmentation Metrics

This module provides comprehensive metrics for evaluating segmentation performance
in few-shot and zero-shot learning scenarios.
"""

import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Tuple, Optional
from sklearn.metrics import precision_recall_curve, average_precision_score
import cv2


class SegmentationMetrics:
    """Comprehensive segmentation metrics calculator."""
    
    def __init__(self, threshold: float = 0.5):
        self.threshold = threshold
    
    def compute_metrics(
        self, 
        pred_mask: torch.Tensor, 
        gt_mask: torch.Tensor
    ) -> Dict[str, float]:
        """
        Compute comprehensive segmentation metrics.
        
        Args:
            pred_mask: Predicted mask tensor [H, W] or [1, H, W]
            gt_mask: Ground truth mask tensor [H, W] or [1, H, W]
            
        Returns:
            Dictionary containing various metrics
        """
        # Ensure masks are 2D
        if pred_mask.dim() == 3:
            pred_mask = pred_mask.squeeze(0)
        if gt_mask.dim() == 3:
            gt_mask = gt_mask.squeeze(0)
        
        # Convert to binary masks
        pred_binary = (pred_mask > self.threshold).float()
        gt_binary = (gt_mask > self.threshold).float()
        
        # Compute basic metrics
        metrics = {}
        
        # IoU (Intersection over Union)
        metrics['iou'] = self.compute_iou(pred_binary, gt_binary)
        
        # Dice coefficient
        metrics['dice'] = self.compute_dice(pred_binary, gt_binary)
        
        # Precision and Recall
        metrics['precision'] = self.compute_precision(pred_binary, gt_binary)
        metrics['recall'] = self.compute_recall(pred_binary, gt_binary)
        
        # F1 Score
        metrics['f1'] = self.compute_f1_score(pred_binary, gt_binary)
        
        # Accuracy
        metrics['accuracy'] = self.compute_accuracy(pred_binary, gt_binary)
        
        # Boundary metrics
        metrics['boundary_iou'] = self.compute_boundary_iou(pred_binary, gt_binary)
        metrics['hausdorff_distance'] = self.compute_hausdorff_distance(pred_binary, gt_binary)
        
        # Area metrics
        metrics['area_ratio'] = self.compute_area_ratio(pred_binary, gt_binary)
        
        return metrics
    
    def compute_iou(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute Intersection over Union."""
        intersection = (pred & gt).sum()
        union = (pred | gt).sum()
        return (intersection / union).item() if union > 0 else 0.0
    
    def compute_dice(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute Dice coefficient."""
        intersection = (pred & gt).sum()
        total = pred.sum() + gt.sum()
        return (2 * intersection / total).item() if total > 0 else 0.0
    
    def compute_precision(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute precision."""
        intersection = (pred & gt).sum()
        return (intersection / pred.sum()).item() if pred.sum() > 0 else 0.0
    
    def compute_recall(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute recall."""
        intersection = (pred & gt).sum()
        return (intersection / gt.sum()).item() if gt.sum() > 0 else 0.0
    
    def compute_f1_score(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute F1 score."""
        precision = self.compute_precision(pred, gt)
        recall = self.compute_recall(pred, gt)
        return (2 * precision * recall / (precision + recall)).item() if (precision + recall) > 0 else 0.0
    
    def compute_accuracy(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute pixel accuracy."""
        correct = (pred == gt).sum()
        total = pred.numel()
        return (correct / total).item()
    
    def compute_boundary_iou(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute boundary IoU."""
        # Extract boundaries
        pred_boundary = self.extract_boundary(pred)
        gt_boundary = self.extract_boundary(gt)
        
        # Compute IoU on boundaries
        return self.compute_iou(pred_boundary, gt_boundary)
    
    def extract_boundary(self, mask: torch.Tensor) -> torch.Tensor:
        """Extract boundary from binary mask."""
        mask_np = mask.cpu().numpy().astype(np.uint8)
        
        # Use morphological operations to extract boundary
        kernel = np.ones((3, 3), np.uint8)
        dilated = cv2.dilate(mask_np, kernel, iterations=1)
        eroded = cv2.erode(mask_np, kernel, iterations=1)
        boundary = dilated - eroded
        
        return torch.from_numpy(boundary).float()
    
    def compute_hausdorff_distance(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute Hausdorff distance between boundaries."""
        pred_boundary = self.extract_boundary(pred)
        gt_boundary = self.extract_boundary(gt)
        
        # Convert to numpy for distance computation
        pred_np = pred_boundary.cpu().numpy()
        gt_np = gt_boundary.cpu().numpy()
        
        # Find boundary points
        pred_points = np.column_stack(np.where(pred_np > 0))
        gt_points = np.column_stack(np.where(gt_np > 0))
        
        if len(pred_points) == 0 or len(gt_points) == 0:
            return float('inf')
        
        # Compute Hausdorff distance
        hausdorff_dist = self._hausdorff_distance(pred_points, gt_points)
        return hausdorff_dist
    
    def _hausdorff_distance(self, set1: np.ndarray, set2: np.ndarray) -> float:
        """Compute Hausdorff distance between two point sets."""
        def directed_hausdorff(set_a, set_b):
            min_distances = []
            for point_a in set_a:
                distances = np.linalg.norm(set_b - point_a, axis=1)
                min_distances.append(np.min(distances))
            return np.max(min_distances)
        
        d1 = directed_hausdorff(set1, set2)
        d2 = directed_hausdorff(set2, set1)
        return max(d1, d2)
    
    def compute_area_ratio(self, pred: torch.Tensor, gt: torch.Tensor) -> float:
        """Compute ratio of predicted area to ground truth area."""
        pred_area = pred.sum()
        gt_area = gt.sum()
        return (pred_area / gt_area).item() if gt_area > 0 else 0.0
    
    def compute_class_metrics(
        self, 
        predictions: Dict[str, torch.Tensor], 
        ground_truth: Dict[str, torch.Tensor]
    ) -> Dict[str, Dict[str, float]]:
        """Compute metrics for multiple classes."""
        class_metrics = {}
        
        for class_name in ground_truth.keys():
            if class_name in predictions:
                metrics = self.compute_metrics(predictions[class_name], ground_truth[class_name])
                class_metrics[class_name] = metrics
            else:
                # No prediction for this class
                class_metrics[class_name] = {
                    'iou': 0.0,
                    'dice': 0.0,
                    'precision': 0.0,
                    'recall': 0.0,
                    'f1': 0.0,
                    'accuracy': 0.0,
                    'boundary_iou': 0.0,
                    'hausdorff_distance': float('inf'),
                    'area_ratio': 0.0
                }
        
        return class_metrics
    
    def compute_average_metrics(
        self, 
        class_metrics: Dict[str, Dict[str, float]]
    ) -> Dict[str, float]:
        """Compute average metrics across all classes."""
        if not class_metrics:
            return {}
        
        # Collect all metric names
        metric_names = list(class_metrics[list(class_metrics.keys())[0]].keys())
        
        # Compute averages
        averages = {}
        for metric_name in metric_names:
            values = [class_metrics[cls][metric_name] for cls in class_metrics.keys()]
            
            # Handle infinite values in Hausdorff distance
            if metric_name == 'hausdorff_distance':
                finite_values = [v for v in values if v != float('inf')]
                if finite_values:
                    averages[metric_name] = np.mean(finite_values)
                else:
                    averages[metric_name] = float('inf')
            else:
                averages[metric_name] = np.mean(values)
        
        return averages


class FewShotMetrics:
    """Specialized metrics for few-shot learning evaluation."""
    
    def __init__(self):
        self.segmentation_metrics = SegmentationMetrics()
    
    def compute_episode_metrics(
        self, 
        episode_results: List[Dict]
    ) -> Dict[str, float]:
        """Compute metrics across multiple episodes."""
        all_metrics = []
        
        for episode in episode_results:
            if 'metrics' in episode:
                all_metrics.append(episode['metrics'])
        
        if not all_metrics:
            return {}
        
        # Compute episode-level statistics
        episode_stats = {}
        metric_names = all_metrics[0].keys()
        
        for metric_name in metric_names:
            values = [ep[metric_name] for ep in all_metrics if metric_name in ep]
            if values:
                episode_stats[f'mean_{metric_name}'] = np.mean(values)
                episode_stats[f'std_{metric_name}'] = np.std(values)
                episode_stats[f'min_{metric_name}'] = np.min(values)
                episode_stats[f'max_{metric_name}'] = np.max(values)
        
        return episode_stats
    
    def compute_shot_analysis(
        self, 
        results_by_shots: Dict[int, List[Dict]]
    ) -> Dict[str, Dict[str, float]]:
        """Analyze performance across different numbers of shots."""
        shot_analysis = {}
        
        for num_shots, results in results_by_shots.items():
            episode_metrics = self.compute_episode_metrics(results)
            shot_analysis[f'{num_shots}_shots'] = episode_metrics
        
        return shot_analysis


class ZeroShotMetrics:
    """Specialized metrics for zero-shot learning evaluation."""
    
    def __init__(self):
        self.segmentation_metrics = SegmentationMetrics()
    
    def compute_prompt_strategy_comparison(
        self, 
        strategy_results: Dict[str, List[Dict]]
    ) -> Dict[str, Dict[str, float]]:
        """Compare different prompt strategies."""
        strategy_comparison = {}
        
        for strategy_name, results in strategy_results.items():
            # Compute average metrics for this strategy
            avg_metrics = {}
            if results:
                metric_names = results[0].keys()
                for metric_name in metric_names:
                    values = [r[metric_name] for r in results if metric_name in r]
                    if values:
                        avg_metrics[f'mean_{metric_name}'] = np.mean(values)
                        avg_metrics[f'std_{metric_name}'] = np.std(values)
            
            strategy_comparison[strategy_name] = avg_metrics
        
        return strategy_comparison
    
    def compute_attention_analysis(
        self, 
        with_attention: List[Dict], 
        without_attention: List[Dict]
    ) -> Dict[str, float]:
        """Analyze the impact of attention mechanisms."""
        if not with_attention or not without_attention:
            return {}
        
        # Compute average metrics
        with_attention_avg = {}
        without_attention_avg = {}
        
        metric_names = with_attention[0].keys()
        for metric_name in metric_names:
            with_values = [r[metric_name] for r in with_attention if metric_name in r]
            without_values = [r[metric_name] for r in without_attention if metric_name in r]
            
            if with_values:
                with_attention_avg[metric_name] = np.mean(with_values)
            if without_values:
                without_attention_avg[metric_name] = np.mean(without_values)
        
        # Compute improvements
        improvements = {}
        for metric_name in with_attention_avg.keys():
            if metric_name in without_attention_avg:
                improvement = with_attention_avg[metric_name] - without_attention_avg[metric_name]
                improvements[f'{metric_name}_improvement'] = improvement
        
        return {
            'with_attention': with_attention_avg,
            'without_attention': without_attention_avg,
            'improvements': improvements
        }