File size: 17,369 Bytes
12fa055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
"""
SAM 2 Zero-Shot Segmentation Model
This module implements zero-shot segmentation using SAM 2 with advanced
text prompting, visual grounding, and attention-based prompt generation.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from PIL import Image
import clip
from segment_anything_2 import sam_model_registry, SamPredictor
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel
import cv2
class SAM2ZeroShot(nn.Module):
"""
SAM 2 Zero-Shot Segmentation Model
Performs zero-shot segmentation using SAM 2 with advanced text prompting
and visual grounding techniques.
"""
def __init__(
self,
sam2_checkpoint: str,
clip_model_name: str = "ViT-B/32",
device: str = "cuda",
use_attention_maps: bool = True,
use_grounding_dino: bool = False,
temperature: float = 0.1
):
super().__init__()
self.device = device
self.temperature = temperature
self.use_attention_maps = use_attention_maps
self.use_grounding_dino = use_grounding_dino
# Initialize SAM 2
self.sam2 = sam_model_registry["vit_h"](checkpoint=sam2_checkpoint)
self.sam2.to(device)
self.sam2_predictor = SamPredictor(self.sam2)
# Initialize CLIP
self.clip_model, self.clip_preprocess = clip.load(clip_model_name, device=device)
self.clip_model.eval()
# Initialize CLIP text and vision models for attention
if self.use_attention_maps:
self.clip_text_model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
self.clip_vision_model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
self.clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
self.clip_text_model.to(device)
self.clip_vision_model.to(device)
# Advanced prompt templates with domain-specific variations
self.advanced_prompts = {
"satellite": {
"building": [
"satellite view of buildings", "aerial photograph of structures",
"overhead view of houses", "urban development from above",
"rooftop structures", "architectural features from space"
],
"road": [
"satellite view of roads", "aerial photograph of streets",
"overhead view of highways", "transportation network from above",
"paved surfaces", "road infrastructure from space"
],
"vegetation": [
"satellite view of vegetation", "aerial photograph of forests",
"overhead view of trees", "green areas from above",
"natural landscape", "plant life from space"
],
"water": [
"satellite view of water", "aerial photograph of lakes",
"overhead view of rivers", "water bodies from above",
"aquatic features", "water resources from space"
]
},
"fashion": {
"shirt": [
"fashion photography of shirts", "clothing item top",
"apparel garment", "upper body clothing",
"casual wear", "formal attire top"
],
"pants": [
"fashion photography of pants", "lower body clothing",
"trousers garment", "leg wear",
"casual pants", "formal trousers"
],
"dress": [
"fashion photography of dresses", "full body garment",
"formal dress", "evening wear",
"casual dress", "party dress"
],
"shoes": [
"fashion photography of shoes", "footwear item",
"foot covering", "walking shoes",
"casual footwear", "formal shoes"
]
},
"robotics": {
"robot": [
"robotics environment with robot", "automation equipment",
"mechanical arm", "industrial robot",
"automated system", "robotic device"
],
"tool": [
"robotics environment with tools", "industrial equipment",
"mechanical tools", "work equipment",
"hand tools", "power tools"
],
"safety": [
"robotics environment with safety equipment", "protective gear",
"safety helmet", "safety vest",
"protective clothing", "safety equipment"
]
}
}
# Prompt enhancement strategies
self.prompt_strategies = {
"descriptive": lambda x: f"a clear image showing {x}",
"contextual": lambda x: f"in a typical environment, {x}",
"detailed": lambda x: f"high quality photograph of {x} with clear details",
"contrastive": lambda x: f"{x} standing out from the background"
}
def generate_attention_maps(
self,
image: torch.Tensor,
text_prompts: List[str]
) -> torch.Tensor:
"""Generate attention maps using CLIP's cross-attention."""
if not self.use_attention_maps:
return None
# Tokenize text prompts
text_inputs = self.clip_tokenizer(
text_prompts,
padding=True,
return_tensors="pt"
).to(self.device)
# Get image features
image_inputs = self.clip_preprocess(image).unsqueeze(0).to(self.device)
# Get attention maps from CLIP
with torch.no_grad():
text_outputs = self.clip_text_model(**text_inputs, output_attentions=True)
vision_outputs = self.clip_vision_model(image_inputs, output_attentions=True)
# Extract cross-attention maps
cross_attention = text_outputs.cross_attentions[-1] # Last layer
attention_maps = cross_attention.mean(dim=1) # Average over heads
return attention_maps
def extract_attention_points(
self,
attention_maps: torch.Tensor,
num_points: int = 5
) -> List[Tuple[int, int]]:
"""Extract points from attention maps for SAM 2 prompting."""
if attention_maps is None:
return []
# Resize attention map to image size
h, w = attention_maps.shape[-2:]
attention_maps = F.interpolate(
attention_maps.unsqueeze(0),
size=(h, w),
mode='bilinear'
).squeeze(0)
# Find top attention points
points = []
for i in range(min(num_points, attention_maps.shape[0])):
attention_map = attention_maps[i]
max_idx = torch.argmax(attention_map)
y, x = max_idx // w, max_idx % w
points.append((int(x), int(y)))
return points
def generate_enhanced_prompts(
self,
domain: str,
class_names: List[str]
) -> List[str]:
"""Generate enhanced prompts using multiple strategies."""
enhanced_prompts = []
for class_name in class_names:
if domain in self.advanced_prompts and class_name in self.advanced_prompts[domain]:
base_prompts = self.advanced_prompts[domain][class_name]
# Add base prompts
enhanced_prompts.extend(base_prompts)
# Add strategy-enhanced prompts
for strategy_name, strategy_func in self.prompt_strategies.items():
for base_prompt in base_prompts[:2]: # Use first 2 base prompts
enhanced_prompt = strategy_func(base_prompt)
enhanced_prompts.append(enhanced_prompt)
else:
# Fallback for unknown classes
enhanced_prompts.append(class_name)
enhanced_prompts.append(f"object: {class_name}")
return enhanced_prompts
def compute_text_image_similarity(
self,
image: torch.Tensor,
text_prompts: List[str]
) -> torch.Tensor:
"""Compute similarity between image and text prompts."""
# Tokenize and encode text
text_tokens = clip.tokenize(text_prompts).to(self.device)
with torch.no_grad():
text_features = self.clip_model.encode_text(text_tokens)
text_features = F.normalize(text_features, dim=-1)
# Encode image
image_input = self.clip_preprocess(image).unsqueeze(0).to(self.device)
image_features = self.clip_model.encode_image(image_input)
image_features = F.normalize(image_features, dim=-1)
# Compute similarity
similarity = torch.matmul(image_features, text_features.T) / self.temperature
return similarity
def generate_sam2_prompts(
self,
image: torch.Tensor,
domain: str,
class_names: List[str]
) -> List[Dict]:
"""Generate comprehensive SAM 2 prompts for zero-shot segmentation."""
prompts = []
# Generate enhanced text prompts
text_prompts = self.generate_enhanced_prompts(domain, class_names)
# Compute text-image similarity
similarities = self.compute_text_image_similarity(image, text_prompts)
# Generate attention maps
attention_maps = self.generate_attention_maps(image, text_prompts)
attention_points = self.extract_attention_points(attention_maps)
# Create prompts for each class
for i, class_name in enumerate(class_names):
class_prompts = []
# Find relevant text prompts for this class
class_text_indices = []
for j, prompt in enumerate(text_prompts):
if class_name.lower() in prompt.lower():
class_text_indices.append(j)
if class_text_indices:
# Get best similarity for this class
class_similarities = similarities[0, class_text_indices]
best_idx = torch.argmax(class_similarities)
best_similarity = class_similarities[best_idx]
if best_similarity > 0.2: # Threshold for relevance
# Add attention-based points
if attention_points:
for point in attention_points[:3]: # Use top 3 points
prompts.append({
'type': 'point',
'data': point,
'label': 1,
'class': class_name,
'confidence': best_similarity.item(),
'source': 'attention'
})
# Add center point as fallback
h, w = image.shape[-2:]
center_point = [w // 2, h // 2]
prompts.append({
'type': 'point',
'data': center_point,
'label': 1,
'class': class_name,
'confidence': best_similarity.item(),
'source': 'center'
})
# Add bounding box prompt (simple rectangle)
if best_similarity > 0.4: # Higher threshold for box prompts
box = [w // 4, h // 4, 3 * w // 4, 3 * h // 4]
prompts.append({
'type': 'box',
'data': box,
'class': class_name,
'confidence': best_similarity.item(),
'source': 'similarity'
})
return prompts
def segment(
self,
image: torch.Tensor,
domain: str,
class_names: List[str]
) -> Dict[str, torch.Tensor]:
"""
Perform zero-shot segmentation.
Args:
image: Input image tensor [C, H, W]
domain: Domain name (satellite, fashion, robotics)
class_names: List of class names to segment
Returns:
Dictionary with masks for each class
"""
# Convert image for SAM 2
if isinstance(image, torch.Tensor):
image_np = image.permute(1, 2, 0).cpu().numpy()
else:
image_np = image
# Set image in SAM 2 predictor
self.sam2_predictor.set_image(image_np)
# Generate prompts
prompts = self.generate_sam2_prompts(image, domain, class_names)
results = {}
for prompt in prompts:
class_name = prompt['class']
if prompt['type'] == 'point':
point = prompt['data']
label = prompt['label']
# Get SAM 2 prediction
masks, scores, logits = self.sam2_predictor.predict(
point_coords=np.array([point]),
point_labels=np.array([label]),
multimask_output=True
)
# Select best mask
best_mask_idx = np.argmax(scores)
mask = torch.from_numpy(masks[best_mask_idx]).float()
# Apply confidence threshold
if prompt['confidence'] > 0.2:
if class_name not in results:
results[class_name] = mask
else:
# Combine masks if multiple prompts for same class
results[class_name] = torch.max(results[class_name], mask)
elif prompt['type'] == 'box':
box = prompt['data']
# Get SAM 2 prediction with box
masks, scores, logits = self.sam2_predictor.predict(
box=np.array(box),
multimask_output=True
)
# Select best mask
best_mask_idx = np.argmax(scores)
mask = torch.from_numpy(masks[best_mask_idx]).float()
# Apply confidence threshold
if prompt['confidence'] > 0.3:
if class_name not in results:
results[class_name] = mask
else:
# Combine masks
results[class_name] = torch.max(results[class_name], mask)
return results
def forward(
self,
image: torch.Tensor,
domain: str,
class_names: List[str]
) -> Dict[str, torch.Tensor]:
"""Forward pass."""
return self.segment(image, domain, class_names)
class ZeroShotEvaluator:
"""Evaluator for zero-shot segmentation."""
def __init__(self):
self.metrics = {}
def compute_iou(self, pred_mask: torch.Tensor, gt_mask: torch.Tensor) -> float:
"""Compute Intersection over Union."""
intersection = (pred_mask & gt_mask).sum()
union = (pred_mask | gt_mask).sum()
return (intersection / union).item() if union > 0 else 0.0
def compute_dice(self, pred_mask: torch.Tensor, gt_mask: torch.Tensor) -> float:
"""Compute Dice coefficient."""
intersection = (pred_mask & gt_mask).sum()
total = pred_mask.sum() + gt_mask.sum()
return (2 * intersection / total).item() if total > 0 else 0.0
def evaluate(
self,
predictions: Dict[str, torch.Tensor],
ground_truth: Dict[str, torch.Tensor]
) -> Dict[str, float]:
"""Evaluate zero-shot segmentation results."""
results = {}
for class_name in ground_truth.keys():
if class_name in predictions:
pred_mask = predictions[class_name] > 0.5 # Threshold
gt_mask = ground_truth[class_name] > 0.5
iou = self.compute_iou(pred_mask, gt_mask)
dice = self.compute_dice(pred_mask, gt_mask)
results[f"{class_name}_iou"] = iou
results[f"{class_name}_dice"] = dice
# Compute average metrics
if results:
results['mean_iou'] = np.mean([v for k, v in results.items() if 'iou' in k])
results['mean_dice'] = np.mean([v for k, v in results.items() if 'dice' in k])
return results |