anonymous202501 commited on
Commit
ea7a400
·
verified ·
1 Parent(s): 3fb6444

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2300 -4
README.md CHANGED
@@ -1,11 +1,2306 @@
1
  ---
2
  tags:
 
3
  - sentence-transformers
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
  - dataset_size:2560000
8
  - loss:MultipleNegativesRankingLoss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  widget:
10
  - source_sentence: ما هي أفضل الفنادق في ايبوهبالقرب من Ipoh Parade Shopping Centre؟
11
  sentences:
@@ -77,6 +2372,7 @@ widget:
77
  Zustand autoklaviert werden.
78
  pipeline_tag: sentence-similarity
79
  library_name: sentence-transformers
 
80
  ---
81
 
82
  # SentenceTransformer
@@ -87,13 +2383,13 @@ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps
87
 
88
  ### Model Description
89
  - **Model Type:** Sentence Transformer
90
- <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
91
  - **Maximum Sequence Length:** 512 tokens
92
  - **Output Dimensionality:** 768 dimensions
93
  - **Similarity Function:** Cosine Similarity
94
- <!-- - **Training Dataset:** Unknown -->
95
  <!-- - **Language:** Unknown -->
96
- <!-- - **License:** Unknown -->
97
 
98
  ### Model Sources
99
 
@@ -125,7 +2421,7 @@ Then you can load this model and run inference.
125
  from sentence_transformers import SentenceTransformer
126
 
127
  # Download from the 🤗 Hub
128
- model = SentenceTransformer("sentence_transformers_model_id")
129
  # Run inference
130
  sentences = [
131
  'Muss der Deckel der TipBox beim Autoklavieren geöffnet werden?',
 
1
  ---
2
  tags:
3
+ - mteb
4
  - sentence-transformers
5
  - sentence-similarity
6
  - feature-extraction
7
  - generated_from_trainer
8
  - dataset_size:2560000
9
  - loss:MultipleNegativesRankingLoss
10
+ model-index:
11
+ - name: .
12
+ results:
13
+ - task:
14
+ type: retrieval
15
+ dataset:
16
+ type: mteb/miracl-hard-negatives
17
+ name: MTEB MIRACLRetrievalHardNegatives (ar)
18
+ config: ar
19
+ split: dev
20
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
21
+ metrics:
22
+ - type: map_at_1
23
+ value: 17.861
24
+ - type: map_at_10
25
+ value: 28.733999999999998
26
+ - type: map_at_100
27
+ value: 30.482
28
+ - type: map_at_1000
29
+ value: 30.616
30
+ - type: map_at_20
31
+ value: 29.717
32
+ - type: map_at_3
33
+ value: 24.617
34
+ - type: map_at_5
35
+ value: 26.654
36
+ - type: mrr_at_1
37
+ value: 26.900000000000002
38
+ - type: mrr_at_10
39
+ value: 37.138
40
+ - type: mrr_at_100
41
+ value: 38.157999999999994
42
+ - type: mrr_at_1000
43
+ value: 38.204
44
+ - type: mrr_at_20
45
+ value: 37.808
46
+ - type: mrr_at_3
47
+ value: 33.717000000000006
48
+ - type: mrr_at_5
49
+ value: 35.632000000000005
50
+ - type: ndcg_at_1
51
+ value: 26.900000000000002
52
+ - type: ndcg_at_10
53
+ value: 36.125
54
+ - type: ndcg_at_100
55
+ value: 43.043
56
+ - type: ndcg_at_1000
57
+ value: 45.611000000000004
58
+ - type: ndcg_at_20
59
+ value: 39.055
60
+ - type: ndcg_at_3
61
+ value: 29.372
62
+ - type: ndcg_at_5
63
+ value: 32.015
64
+ - type: precision_at_1
65
+ value: 26.900000000000002
66
+ - type: precision_at_10
67
+ value: 8.59
68
+ - type: precision_at_100
69
+ value: 1.444
70
+ - type: precision_at_1000
71
+ value: 0.181
72
+ - type: precision_at_20
73
+ value: 5.295
74
+ - type: precision_at_3
75
+ value: 16.933
76
+ - type: precision_at_5
77
+ value: 12.839999999999998
78
+ - type: recall_at_1
79
+ value: 17.861
80
+ - type: recall_at_10
81
+ value: 49.175999999999995
82
+ - type: recall_at_100
83
+ value: 76.28399999999999
84
+ - type: recall_at_1000
85
+ value: 92.905
86
+ - type: recall_at_20
87
+ value: 58.755
88
+ - type: recall_at_3
89
+ value: 31.334
90
+ - type: recall_at_5
91
+ value: 38.217
92
+ - task:
93
+ type: retrieval
94
+ dataset:
95
+ type: mteb/mrtydi
96
+ name: MTEB MrTydiRetrieval (arabic)
97
+ config: arabic
98
+ split: test
99
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
100
+ metrics:
101
+ - type: map_at_1
102
+ value: 16.744
103
+ - type: map_at_10
104
+ value: 25.447999999999997
105
+ - type: map_at_100
106
+ value: 26.296999999999997
107
+ - type: map_at_1000
108
+ value: 26.369
109
+ - type: map_at_20
110
+ value: 25.951
111
+ - type: map_at_3
112
+ value: 22.826
113
+ - type: map_at_5
114
+ value: 24.309
115
+ - type: mrr_at_1
116
+ value: 17.669
117
+ - type: mrr_at_10
118
+ value: 26.711000000000002
119
+ - type: mrr_at_100
120
+ value: 27.534
121
+ - type: mrr_at_1000
122
+ value: 27.589000000000002
123
+ - type: mrr_at_20
124
+ value: 27.211999999999996
125
+ - type: mrr_at_3
126
+ value: 24.052
127
+ - type: mrr_at_5
128
+ value: 25.532
129
+ - type: ndcg_at_1
130
+ value: 17.669
131
+ - type: ndcg_at_10
132
+ value: 30.53
133
+ - type: ndcg_at_100
134
+ value: 34.823
135
+ - type: ndcg_at_1000
136
+ value: 36.624
137
+ - type: ndcg_at_20
138
+ value: 32.323
139
+ - type: ndcg_at_3
140
+ value: 25.119000000000003
141
+ - type: ndcg_at_5
142
+ value: 27.791
143
+ - type: precision_at_1
144
+ value: 17.669
145
+ - type: precision_at_10
146
+ value: 4.8660000000000005
147
+ - type: precision_at_100
148
+ value: 0.7230000000000001
149
+ - type: precision_at_1000
150
+ value: 0.09
151
+ - type: precision_at_20
152
+ value: 2.826
153
+ - type: precision_at_3
154
+ value: 10.823
155
+ - type: precision_at_5
156
+ value: 7.9
157
+ - type: recall_at_1
158
+ value: 16.744
159
+ - type: recall_at_10
160
+ value: 45.205
161
+ - type: recall_at_100
162
+ value: 65.094
163
+ - type: recall_at_1000
164
+ value: 78.739
165
+ - type: recall_at_20
166
+ value: 52.066
167
+ - type: recall_at_3
168
+ value: 30.574
169
+ - type: recall_at_5
170
+ value: 36.986999999999995
171
+ - task:
172
+ type: retrieval
173
+ dataset:
174
+ type: mteb/miracl-hard-negatives
175
+ name: MTEB MIRACLRetrievalHardNegatives (bn)
176
+ config: bn
177
+ split: dev
178
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
179
+ metrics:
180
+ - type: map_at_1
181
+ value: 15.962000000000002
182
+ - type: map_at_10
183
+ value: 24.746000000000002
184
+ - type: map_at_100
185
+ value: 26.306
186
+ - type: map_at_1000
187
+ value: 26.451
188
+ - type: map_at_20
189
+ value: 25.507
190
+ - type: map_at_3
191
+ value: 20.810000000000002
192
+ - type: map_at_5
193
+ value: 23.095
194
+ - type: mrr_at_1
195
+ value: 26.521
196
+ - type: mrr_at_10
197
+ value: 36.268
198
+ - type: mrr_at_100
199
+ value: 36.986999999999995
200
+ - type: mrr_at_1000
201
+ value: 37.047000000000004
202
+ - type: mrr_at_20
203
+ value: 36.611
204
+ - type: mrr_at_3
205
+ value: 32.644
206
+ - type: mrr_at_5
207
+ value: 35.223
208
+ - type: ndcg_at_1
209
+ value: 26.521
210
+ - type: ndcg_at_10
211
+ value: 32.038
212
+ - type: ndcg_at_100
213
+ value: 38.577
214
+ - type: ndcg_at_1000
215
+ value: 41.449999999999996
216
+ - type: ndcg_at_20
217
+ value: 34.086
218
+ - type: ndcg_at_3
219
+ value: 25.515
220
+ - type: ndcg_at_5
221
+ value: 28.860999999999997
222
+ - type: precision_at_1
223
+ value: 26.521
224
+ - type: precision_at_10
225
+ value: 8.224
226
+ - type: precision_at_100
227
+ value: 1.426
228
+ - type: precision_at_1000
229
+ value: 0.183
230
+ - type: precision_at_20
231
+ value: 4.854
232
+ - type: precision_at_3
233
+ value: 15.328
234
+ - type: precision_at_5
235
+ value: 12.701
236
+ - type: recall_at_1
237
+ value: 15.962000000000002
238
+ - type: recall_at_10
239
+ value: 41.573
240
+ - type: recall_at_100
241
+ value: 67.963
242
+ - type: recall_at_1000
243
+ value: 87.077
244
+ - type: recall_at_20
245
+ value: 48.036
246
+ - type: recall_at_3
247
+ value: 25.457
248
+ - type: recall_at_5
249
+ value: 33.143
250
+ - task:
251
+ type: retrieval
252
+ dataset:
253
+ type: mteb/mrtydi
254
+ name: MTEB MrTydiRetrieval (bengali)
255
+ config: bengali
256
+ split: test
257
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
258
+ metrics:
259
+ - type: map_at_1
260
+ value: 14.865
261
+ - type: map_at_10
262
+ value: 24.122
263
+ - type: map_at_100
264
+ value: 25.345000000000002
265
+ - type: map_at_1000
266
+ value: 25.413000000000004
267
+ - type: map_at_20
268
+ value: 24.887999999999998
269
+ - type: map_at_3
270
+ value: 19.97
271
+ - type: map_at_5
272
+ value: 22.898
273
+ - type: mrr_at_1
274
+ value: 17.116999999999997
275
+ - type: mrr_at_10
276
+ value: 26.115
277
+ - type: mrr_at_100
278
+ value: 27.194000000000003
279
+ - type: mrr_at_1000
280
+ value: 27.243000000000002
281
+ - type: mrr_at_20
282
+ value: 26.828999999999997
283
+ - type: mrr_at_3
284
+ value: 21.922
285
+ - type: mrr_at_5
286
+ value: 24.985
287
+ - type: ndcg_at_1
288
+ value: 17.116999999999997
289
+ - type: ndcg_at_10
290
+ value: 29.918
291
+ - type: ndcg_at_100
292
+ value: 35.658
293
+ - type: ndcg_at_1000
294
+ value: 37.349
295
+ - type: ndcg_at_20
296
+ value: 32.74
297
+ - type: ndcg_at_3
298
+ value: 21.807000000000002
299
+ - type: ndcg_at_5
300
+ value: 27.128999999999998
301
+ - type: precision_at_1
302
+ value: 17.116999999999997
303
+ - type: precision_at_10
304
+ value: 5.405
305
+ - type: precision_at_100
306
+ value: 0.8380000000000001
307
+ - type: precision_at_1000
308
+ value: 0.099
309
+ - type: precision_at_20
310
+ value: 3.288
311
+ - type: precision_at_3
312
+ value: 9.91
313
+ - type: precision_at_5
314
+ value: 8.828999999999999
315
+ - type: recall_at_1
316
+ value: 14.865
317
+ - type: recall_at_10
318
+ value: 45.946
319
+ - type: recall_at_100
320
+ value: 72.072
321
+ - type: recall_at_1000
322
+ value: 85.135
323
+ - type: recall_at_20
324
+ value: 57.206999999999994
325
+ - type: recall_at_3
326
+ value: 25.224999999999998
327
+ - type: recall_at_5
328
+ value: 37.838
329
+ - task:
330
+ type: retrieval
331
+ dataset:
332
+ type: mteb/miracl-hard-negatives
333
+ name: MTEB MIRACLRetrievalHardNegatives (de)
334
+ config: de
335
+ split: dev
336
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
337
+ metrics:
338
+ - type: map_at_1
339
+ value: 10.285
340
+ - type: map_at_10
341
+ value: 22.831000000000003
342
+ - type: map_at_100
343
+ value: 25.868000000000002
344
+ - type: map_at_1000
345
+ value: 26.029999999999998
346
+ - type: map_at_20
347
+ value: 24.3
348
+ - type: map_at_3
349
+ value: 16.539
350
+ - type: map_at_5
351
+ value: 19.593
352
+ - type: mrr_at_1
353
+ value: 23.607
354
+ - type: mrr_at_10
355
+ value: 36.899
356
+ - type: mrr_at_100
357
+ value: 37.958
358
+ - type: mrr_at_1000
359
+ value: 37.987
360
+ - type: mrr_at_20
361
+ value: 37.454
362
+ - type: mrr_at_3
363
+ value: 32.732
364
+ - type: mrr_at_5
365
+ value: 35.126000000000005
366
+ - type: ndcg_at_1
367
+ value: 23.607
368
+ - type: ndcg_at_10
369
+ value: 32.774
370
+ - type: ndcg_at_100
371
+ value: 43.553999999999995
372
+ - type: ndcg_at_1000
373
+ value: 45.604
374
+ - type: ndcg_at_20
375
+ value: 36.408
376
+ - type: ndcg_at_3
377
+ value: 23.846
378
+ - type: ndcg_at_5
379
+ value: 26.954
380
+ - type: precision_at_1
381
+ value: 23.607
382
+ - type: precision_at_10
383
+ value: 11.639
384
+ - type: precision_at_100
385
+ value: 2.2689999999999997
386
+ - type: precision_at_1000
387
+ value: 0.258
388
+ - type: precision_at_20
389
+ value: 7.327999999999999
390
+ - type: precision_at_3
391
+ value: 18.251
392
+ - type: precision_at_5
393
+ value: 15.344
394
+ - type: recall_at_1
395
+ value: 10.285
396
+ - type: recall_at_10
397
+ value: 46.227000000000004
398
+ - type: recall_at_100
399
+ value: 85.478
400
+ - type: recall_at_1000
401
+ value: 97.52
402
+ - type: recall_at_20
403
+ value: 56.738
404
+ - type: recall_at_3
405
+ value: 22.633
406
+ - type: recall_at_5
407
+ value: 31.898
408
+ - task:
409
+ type: retrieval
410
+ dataset:
411
+ type: mteb/miracl-hard-negatives
412
+ name: MTEB MIRACLRetrievalHardNegatives (en)
413
+ config: en
414
+ split: dev
415
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
416
+ metrics:
417
+ - type: map_at_1
418
+ value: 11.625
419
+ - type: map_at_10
420
+ value: 22.033
421
+ - type: map_at_100
422
+ value: 25.343
423
+ - type: map_at_1000
424
+ value: 25.555
425
+ - type: map_at_20
426
+ value: 23.77
427
+ - type: map_at_3
428
+ value: 17.163
429
+ - type: map_at_5
430
+ value: 19.431
431
+ - type: mrr_at_1
432
+ value: 24.781
433
+ - type: mrr_at_10
434
+ value: 35.998000000000005
435
+ - type: mrr_at_100
436
+ value: 37.345
437
+ - type: mrr_at_1000
438
+ value: 37.376
439
+ - type: mrr_at_20
440
+ value: 36.912
441
+ - type: mrr_at_3
442
+ value: 32.144
443
+ - type: mrr_at_5
444
+ value: 34.184
445
+ - type: ndcg_at_1
446
+ value: 24.781
447
+ - type: ndcg_at_10
448
+ value: 30.608999999999998
449
+ - type: ndcg_at_100
450
+ value: 42.407000000000004
451
+ - type: ndcg_at_1000
452
+ value: 45.1
453
+ - type: ndcg_at_20
454
+ value: 35.188
455
+ - type: ndcg_at_3
456
+ value: 24.271
457
+ - type: ndcg_at_5
458
+ value: 26.090000000000003
459
+ - type: precision_at_1
460
+ value: 24.781
461
+ - type: precision_at_10
462
+ value: 10.388
463
+ - type: precision_at_100
464
+ value: 2.35
465
+ - type: precision_at_1000
466
+ value: 0.28400000000000003
467
+ - type: precision_at_20
468
+ value: 7.140000000000001
469
+ - type: precision_at_3
470
+ value: 17.438000000000002
471
+ - type: precision_at_5
472
+ value: 14.043
473
+ - type: recall_at_1
474
+ value: 11.625
475
+ - type: recall_at_10
476
+ value: 40.717
477
+ - type: recall_at_100
478
+ value: 82.492
479
+ - type: recall_at_1000
480
+ value: 97.495
481
+ - type: recall_at_20
482
+ value: 54.208
483
+ - type: recall_at_3
484
+ value: 21.747
485
+ - type: recall_at_5
486
+ value: 28.74
487
+ - task:
488
+ type: retrieval
489
+ dataset:
490
+ type: mteb/mrtydi
491
+ name: MTEB MrTydiRetrieval (english)
492
+ config: english
493
+ split: test
494
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
495
+ metrics:
496
+ - type: map_at_1
497
+ value: 6.765000000000001
498
+ - type: map_at_10
499
+ value: 13.469999999999999
500
+ - type: map_at_100
501
+ value: 14.575
502
+ - type: map_at_1000
503
+ value: 14.668000000000001
504
+ - type: map_at_20
505
+ value: 14.055000000000001
506
+ - type: map_at_3
507
+ value: 10.853
508
+ - type: map_at_5
509
+ value: 12.251
510
+ - type: mrr_at_1
511
+ value: 8.602
512
+ - type: mrr_at_10
513
+ value: 15.595999999999998
514
+ - type: mrr_at_100
515
+ value: 16.624
516
+ - type: mrr_at_1000
517
+ value: 16.704
518
+ - type: mrr_at_20
519
+ value: 16.169
520
+ - type: mrr_at_3
521
+ value: 12.881
522
+ - type: mrr_at_5
523
+ value: 14.393
524
+ - type: ndcg_at_1
525
+ value: 8.602
526
+ - type: ndcg_at_10
527
+ value: 18.107
528
+ - type: ndcg_at_100
529
+ value: 23.851
530
+ - type: ndcg_at_1000
531
+ value: 26.379
532
+ - type: ndcg_at_20
533
+ value: 20.182
534
+ - type: ndcg_at_3
535
+ value: 12.681000000000001
536
+ - type: ndcg_at_5
537
+ value: 15.190000000000001
538
+ - type: precision_at_1
539
+ value: 8.602
540
+ - type: precision_at_10
541
+ value: 3.6830000000000003
542
+ - type: precision_at_100
543
+ value: 0.7040000000000001
544
+ - type: precision_at_1000
545
+ value: 0.095
546
+ - type: precision_at_20
547
+ value: 2.332
548
+ - type: precision_at_3
549
+ value: 6.407
550
+ - type: precision_at_5
551
+ value: 5.188000000000001
552
+ - type: recall_at_1
553
+ value: 6.765000000000001
554
+ - type: recall_at_10
555
+ value: 30.511
556
+ - type: recall_at_100
557
+ value: 57.303000000000004
558
+ - type: recall_at_1000
559
+ value: 76.568
560
+ - type: recall_at_20
561
+ value: 38.284
562
+ - type: recall_at_3
563
+ value: 16.084
564
+ - type: recall_at_5
565
+ value: 21.886
566
+ - task:
567
+ type: retrieval
568
+ dataset:
569
+ type: mteb/miracl-hard-negatives
570
+ name: MTEB MIRACLRetrievalHardNegatives (fa)
571
+ config: fa
572
+ split: dev
573
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
574
+ metrics:
575
+ - type: map_at_1
576
+ value: 15.268
577
+ - type: map_at_10
578
+ value: 27.929
579
+ - type: map_at_100
580
+ value: 30.323
581
+ - type: map_at_1000
582
+ value: 30.433
583
+ - type: map_at_20
584
+ value: 29.247
585
+ - type: map_at_3
586
+ value: 22.684
587
+ - type: map_at_5
588
+ value: 25.453
589
+ - type: mrr_at_1
590
+ value: 24.684
591
+ - type: mrr_at_10
592
+ value: 36.925999999999995
593
+ - type: mrr_at_100
594
+ value: 38.031
595
+ - type: mrr_at_1000
596
+ value: 38.063
597
+ - type: mrr_at_20
598
+ value: 37.62
599
+ - type: mrr_at_3
600
+ value: 33.07
601
+ - type: mrr_at_5
602
+ value: 35.467
603
+ - type: ndcg_at_1
604
+ value: 24.684
605
+ - type: ndcg_at_10
606
+ value: 36.153999999999996
607
+ - type: ndcg_at_100
608
+ value: 44.828
609
+ - type: ndcg_at_1000
610
+ value: 46.482
611
+ - type: ndcg_at_20
612
+ value: 39.678999999999995
613
+ - type: ndcg_at_3
614
+ value: 28.223
615
+ - type: ndcg_at_5
616
+ value: 31.684
617
+ - type: precision_at_1
618
+ value: 24.684
619
+ - type: precision_at_10
620
+ value: 9.778
621
+ - type: precision_at_100
622
+ value: 1.7610000000000001
623
+ - type: precision_at_1000
624
+ value: 0.199
625
+ - type: precision_at_20
626
+ value: 6.178999999999999
627
+ - type: precision_at_3
628
+ value: 17.563000000000002
629
+ - type: precision_at_5
630
+ value: 14.272000000000002
631
+ - type: recall_at_1
632
+ value: 15.268
633
+ - type: recall_at_10
634
+ value: 50.39
635
+ - type: recall_at_100
636
+ value: 83.39800000000001
637
+ - type: recall_at_1000
638
+ value: 93.589
639
+ - type: recall_at_20
640
+ value: 61.543000000000006
641
+ - type: recall_at_3
642
+ value: 29.754
643
+ - type: recall_at_5
644
+ value: 38.504
645
+ - task:
646
+ type: retrieval
647
+ dataset:
648
+ type: mteb/miracl-hard-negatives
649
+ name: MTEB MIRACLRetrievalHardNegatives (fi)
650
+ config: fi
651
+ split: dev
652
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
653
+ metrics:
654
+ - type: map_at_1
655
+ value: 20.075000000000003
656
+ - type: map_at_10
657
+ value: 33.783
658
+ - type: map_at_100
659
+ value: 35.548
660
+ - type: map_at_1000
661
+ value: 35.650999999999996
662
+ - type: map_at_20
663
+ value: 34.824
664
+ - type: map_at_3
665
+ value: 29.069
666
+ - type: map_at_5
667
+ value: 31.887999999999998
668
+ - type: mrr_at_1
669
+ value: 32.9
670
+ - type: mrr_at_10
671
+ value: 44.633
672
+ - type: mrr_at_100
673
+ value: 45.491
674
+ - type: mrr_at_1000
675
+ value: 45.518
676
+ - type: mrr_at_20
677
+ value: 45.184999999999995
678
+ - type: mrr_at_3
679
+ value: 41.533
680
+ - type: mrr_at_5
681
+ value: 43.338
682
+ - type: ndcg_at_1
683
+ value: 32.9
684
+ - type: ndcg_at_10
685
+ value: 42.068
686
+ - type: ndcg_at_100
687
+ value: 48.836
688
+ - type: ndcg_at_1000
689
+ value: 50.849999999999994
690
+ - type: ndcg_at_20
691
+ value: 45.013999999999996
692
+ - type: ndcg_at_3
693
+ value: 34.382000000000005
694
+ - type: ndcg_at_5
695
+ value: 38.169
696
+ - type: precision_at_1
697
+ value: 32.9
698
+ - type: precision_at_10
699
+ value: 10.02
700
+ - type: precision_at_100
701
+ value: 1.545
702
+ - type: precision_at_1000
703
+ value: 0.182
704
+ - type: precision_at_20
705
+ value: 5.955
706
+ - type: precision_at_3
707
+ value: 20.9
708
+ - type: precision_at_5
709
+ value: 15.98
710
+ - type: recall_at_1
711
+ value: 20.075000000000003
712
+ - type: recall_at_10
713
+ value: 55.042
714
+ - type: recall_at_100
715
+ value: 81.609
716
+ - type: recall_at_1000
717
+ value: 95.048
718
+ - type: recall_at_20
719
+ value: 64.791
720
+ - type: recall_at_3
721
+ value: 36.617
722
+ - type: recall_at_5
723
+ value: 44.905
724
+ - task:
725
+ type: retrieval
726
+ dataset:
727
+ type: mteb/mrtydi
728
+ name: MTEB MrTydiRetrieval (finnish)
729
+ config: finnish
730
+ split: test
731
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
732
+ metrics:
733
+ - type: map_at_1
734
+ value: 13.489999999999998
735
+ - type: map_at_10
736
+ value: 20.253
737
+ - type: map_at_100
738
+ value: 21.201
739
+ - type: map_at_1000
740
+ value: 21.285999999999998
741
+ - type: map_at_20
742
+ value: 20.796
743
+ - type: map_at_3
744
+ value: 17.869
745
+ - type: map_at_5
746
+ value: 19.217000000000002
747
+ - type: mrr_at_1
748
+ value: 14.514
749
+ - type: mrr_at_10
750
+ value: 21.369
751
+ - type: mrr_at_100
752
+ value: 22.273
753
+ - type: mrr_at_1000
754
+ value: 22.346
755
+ - type: mrr_at_20
756
+ value: 21.892
757
+ - type: mrr_at_3
758
+ value: 18.913
759
+ - type: mrr_at_5
760
+ value: 20.336000000000002
761
+ - type: ndcg_at_1
762
+ value: 14.514
763
+ - type: ndcg_at_10
764
+ value: 24.426000000000002
765
+ - type: ndcg_at_100
766
+ value: 29.253
767
+ - type: ndcg_at_1000
768
+ value: 31.752000000000002
769
+ - type: ndcg_at_20
770
+ value: 26.36
771
+ - type: ndcg_at_3
772
+ value: 19.523
773
+ - type: ndcg_at_5
774
+ value: 21.986
775
+ - type: precision_at_1
776
+ value: 14.514
777
+ - type: precision_at_10
778
+ value: 4.011
779
+ - type: precision_at_100
780
+ value: 0.6629999999999999
781
+ - type: precision_at_1000
782
+ value: 0.09
783
+ - type: precision_at_20
784
+ value: 2.444
785
+ - type: precision_at_3
786
+ value: 8.373
787
+ - type: precision_at_5
788
+ value: 6.332
789
+ - type: recall_at_1
790
+ value: 13.489999999999998
791
+ - type: recall_at_10
792
+ value: 36.43
793
+ - type: recall_at_100
794
+ value: 59.024
795
+ - type: recall_at_1000
796
+ value: 78.668
797
+ - type: recall_at_20
798
+ value: 43.793
799
+ - type: recall_at_3
800
+ value: 23.339
801
+ - type: recall_at_5
802
+ value: 29.213
803
+ - task:
804
+ type: retrieval
805
+ dataset:
806
+ type: mteb/miracl-hard-negatives
807
+ name: MTEB MIRACLRetrievalHardNegatives (fr)
808
+ config: fr
809
+ split: dev
810
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
811
+ metrics:
812
+ - type: map_at_1
813
+ value: 7.768
814
+ - type: map_at_10
815
+ value: 17.591
816
+ - type: map_at_100
817
+ value: 20.544999999999998
818
+ - type: map_at_1000
819
+ value: 20.673
820
+ - type: map_at_20
821
+ value: 19.131
822
+ - type: map_at_3
823
+ value: 12.567999999999998
824
+ - type: map_at_5
825
+ value: 14.846
826
+ - type: mrr_at_1
827
+ value: 13.994000000000002
828
+ - type: mrr_at_10
829
+ value: 25.740000000000002
830
+ - type: mrr_at_100
831
+ value: 27.156999999999996
832
+ - type: mrr_at_1000
833
+ value: 27.189999999999998
834
+ - type: mrr_at_20
835
+ value: 26.61
836
+ - type: mrr_at_3
837
+ value: 20.554
838
+ - type: mrr_at_5
839
+ value: 23.163
840
+ - type: ndcg_at_1
841
+ value: 13.994000000000002
842
+ - type: ndcg_at_10
843
+ value: 25.929000000000002
844
+ - type: ndcg_at_100
845
+ value: 37.244
846
+ - type: ndcg_at_1000
847
+ value: 39.211
848
+ - type: ndcg_at_20
849
+ value: 30.314000000000004
850
+ - type: ndcg_at_3
851
+ value: 16.329
852
+ - type: ndcg_at_5
853
+ value: 19.826
854
+ - type: precision_at_1
855
+ value: 13.994000000000002
856
+ - type: precision_at_10
857
+ value: 8.192
858
+ - type: precision_at_100
859
+ value: 1.799
860
+ - type: precision_at_1000
861
+ value: 0.207
862
+ - type: precision_at_20
863
+ value: 5.583
864
+ - type: precision_at_3
865
+ value: 11.079
866
+ - type: precision_at_5
867
+ value: 10.204
868
+ - type: recall_at_1
869
+ value: 7.768
870
+ - type: recall_at_10
871
+ value: 41.516999999999996
872
+ - type: recall_at_100
873
+ value: 85.148
874
+ - type: recall_at_1000
875
+ value: 97.342
876
+ - type: recall_at_20
877
+ value: 55.696
878
+ - type: recall_at_3
879
+ value: 17.559
880
+ - type: recall_at_5
881
+ value: 25.128
882
+ - task:
883
+ type: retrieval
884
+ dataset:
885
+ type: mteb/miracl-hard-negatives
886
+ name: MTEB MIRACLRetrievalHardNegatives (hi)
887
+ config: hi
888
+ split: dev
889
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
890
+ metrics:
891
+ - type: map_at_1
892
+ value: 12.864
893
+ - type: map_at_10
894
+ value: 23.992
895
+ - type: map_at_100
896
+ value: 26.007
897
+ - type: map_at_1000
898
+ value: 26.157999999999998
899
+ - type: map_at_20
900
+ value: 25.130000000000003
901
+ - type: map_at_3
902
+ value: 19.867
903
+ - type: map_at_5
904
+ value: 21.657
905
+ - type: mrr_at_1
906
+ value: 25.714
907
+ - type: mrr_at_10
908
+ value: 36.374
909
+ - type: mrr_at_100
910
+ value: 37.399
911
+ - type: mrr_at_1000
912
+ value: 37.458000000000006
913
+ - type: mrr_at_20
914
+ value: 37.055
915
+ - type: mrr_at_3
916
+ value: 33.762
917
+ - type: mrr_at_5
918
+ value: 35.176
919
+ - type: ndcg_at_1
920
+ value: 25.714
921
+ - type: ndcg_at_10
922
+ value: 31.902
923
+ - type: ndcg_at_100
924
+ value: 39.534000000000006
925
+ - type: ndcg_at_1000
926
+ value: 42.424
927
+ - type: ndcg_at_20
928
+ value: 35.189
929
+ - type: ndcg_at_3
930
+ value: 26.52
931
+ - type: ndcg_at_5
932
+ value: 27.833999999999996
933
+ - type: precision_at_1
934
+ value: 25.714
935
+ - type: precision_at_10
936
+ value: 9.171
937
+ - type: precision_at_100
938
+ value: 1.569
939
+ - type: precision_at_1000
940
+ value: 0.197
941
+ - type: precision_at_20
942
+ value: 5.671
943
+ - type: precision_at_3
944
+ value: 18.095
945
+ - type: precision_at_5
946
+ value: 13.370999999999999
947
+ - type: recall_at_1
948
+ value: 12.864
949
+ - type: recall_at_10
950
+ value: 42.522999999999996
951
+ - type: recall_at_100
952
+ value: 72.653
953
+ - type: recall_at_1000
954
+ value: 91.49199999999999
955
+ - type: recall_at_20
956
+ value: 53.452999999999996
957
+ - type: recall_at_3
958
+ value: 26.007
959
+ - type: recall_at_5
960
+ value: 31.608999999999998
961
+ - task:
962
+ type: retrieval
963
+ dataset:
964
+ type: mteb/miracl-hard-negatives
965
+ name: MTEB MIRACLRetrievalHardNegatives (id)
966
+ config: id
967
+ split: dev
968
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
969
+ metrics:
970
+ - type: map_at_1
971
+ value: 10.563
972
+ - type: map_at_10
973
+ value: 20.183
974
+ - type: map_at_100
975
+ value: 22.461000000000002
976
+ - type: map_at_1000
977
+ value: 22.719
978
+ - type: map_at_20
979
+ value: 21.342
980
+ - type: map_at_3
981
+ value: 16.25
982
+ - type: map_at_5
983
+ value: 18.415
984
+ - type: mrr_at_1
985
+ value: 23.541999999999998
986
+ - type: mrr_at_10
987
+ value: 35.272999999999996
988
+ - type: mrr_at_100
989
+ value: 36.291000000000004
990
+ - type: mrr_at_1000
991
+ value: 36.336
992
+ - type: mrr_at_20
993
+ value: 35.894999999999996
994
+ - type: mrr_at_3
995
+ value: 31.874999999999996
996
+ - type: mrr_at_5
997
+ value: 33.833
998
+ - type: ndcg_at_1
999
+ value: 23.541999999999998
1000
+ - type: ndcg_at_10
1001
+ value: 28.144000000000002
1002
+ - type: ndcg_at_100
1003
+ value: 36.806
1004
+ - type: ndcg_at_1000
1005
+ value: 40.888000000000005
1006
+ - type: ndcg_at_20
1007
+ value: 31.263
1008
+ - type: ndcg_at_3
1009
+ value: 23.796999999999997
1010
+ - type: ndcg_at_5
1011
+ value: 25.304
1012
+ - type: precision_at_1
1013
+ value: 23.541999999999998
1014
+ - type: precision_at_10
1015
+ value: 9.771
1016
+ - type: precision_at_100
1017
+ value: 1.994
1018
+ - type: precision_at_1000
1019
+ value: 0.281
1020
+ - type: precision_at_20
1021
+ value: 6.343999999999999
1022
+ - type: precision_at_3
1023
+ value: 17.639
1024
+ - type: precision_at_5
1025
+ value: 14.271
1026
+ - type: recall_at_1
1027
+ value: 10.563
1028
+ - type: recall_at_10
1029
+ value: 35.47
1030
+ - type: recall_at_100
1031
+ value: 65.713
1032
+ - type: recall_at_1000
1033
+ value: 88.68599999999999
1034
+ - type: recall_at_20
1035
+ value: 44.285999999999994
1036
+ - type: recall_at_3
1037
+ value: 21.366
1038
+ - type: recall_at_5
1039
+ value: 27.598
1040
+ - task:
1041
+ type: retrieval
1042
+ dataset:
1043
+ type: mteb/mrtydi
1044
+ name: MTEB MrTydiRetrieval (indonesian)
1045
+ config: indonesian
1046
+ split: test
1047
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
1048
+ metrics:
1049
+ - type: map_at_1
1050
+ value: 17.149
1051
+ - type: map_at_10
1052
+ value: 27.351
1053
+ - type: map_at_100
1054
+ value: 28.42
1055
+ - type: map_at_1000
1056
+ value: 28.491
1057
+ - type: map_at_20
1058
+ value: 28.026
1059
+ - type: map_at_3
1060
+ value: 23.918
1061
+ - type: map_at_5
1062
+ value: 26.125999999999998
1063
+ - type: mrr_at_1
1064
+ value: 18.938
1065
+ - type: mrr_at_10
1066
+ value: 28.853
1067
+ - type: mrr_at_100
1068
+ value: 29.805999999999997
1069
+ - type: mrr_at_1000
1070
+ value: 29.863
1071
+ - type: mrr_at_20
1072
+ value: 29.457
1073
+ - type: mrr_at_3
1074
+ value: 25.714
1075
+ - type: mrr_at_5
1076
+ value: 27.674
1077
+ - type: ndcg_at_1
1078
+ value: 18.938
1079
+ - type: ndcg_at_10
1080
+ value: 33.195
1081
+ - type: ndcg_at_100
1082
+ value: 38.17
1083
+ - type: ndcg_at_1000
1084
+ value: 40.109
1085
+ - type: ndcg_at_20
1086
+ value: 35.514
1087
+ - type: ndcg_at_3
1088
+ value: 26.509
1089
+ - type: ndcg_at_5
1090
+ value: 30.325000000000003
1091
+ - type: precision_at_1
1092
+ value: 18.938
1093
+ - type: precision_at_10
1094
+ value: 5.694
1095
+ - type: precision_at_100
1096
+ value: 0.8370000000000001
1097
+ - type: precision_at_1000
1098
+ value: 0.10200000000000001
1099
+ - type: precision_at_20
1100
+ value: 3.366
1101
+ - type: precision_at_3
1102
+ value: 12.142999999999999
1103
+ - type: precision_at_5
1104
+ value: 9.385
1105
+ - type: recall_at_1
1106
+ value: 17.149
1107
+ - type: recall_at_10
1108
+ value: 49.799
1109
+ - type: recall_at_100
1110
+ value: 72.256
1111
+ - type: recall_at_1000
1112
+ value: 87.354
1113
+ - type: recall_at_20
1114
+ value: 58.585
1115
+ - type: recall_at_3
1116
+ value: 32.268
1117
+ - type: recall_at_5
1118
+ value: 41.275
1119
+ - task:
1120
+ type: retrieval
1121
+ dataset:
1122
+ type: mteb/miracl-hard-negatives
1123
+ name: MTEB MIRACLRetrievalHardNegatives (ja)
1124
+ config: ja
1125
+ split: dev
1126
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
1127
+ metrics:
1128
+ - type: map_at_1
1129
+ value: 10.001999999999999
1130
+ - type: map_at_10
1131
+ value: 19.887
1132
+ - type: map_at_100
1133
+ value: 22.192
1134
+ - type: map_at_1000
1135
+ value: 22.364
1136
+ - type: map_at_20
1137
+ value: 21.127000000000002
1138
+ - type: map_at_3
1139
+ value: 16.297
1140
+ - type: map_at_5
1141
+ value: 18.046
1142
+ - type: mrr_at_1
1143
+ value: 17.442
1144
+ - type: mrr_at_10
1145
+ value: 29.804000000000002
1146
+ - type: mrr_at_100
1147
+ value: 31.025999999999996
1148
+ - type: mrr_at_1000
1149
+ value: 31.075999999999997
1150
+ - type: mrr_at_20
1151
+ value: 30.570000000000004
1152
+ - type: mrr_at_3
1153
+ value: 26.491999999999997
1154
+ - type: mrr_at_5
1155
+ value: 28.341
1156
+ - type: ndcg_at_1
1157
+ value: 17.442
1158
+ - type: ndcg_at_10
1159
+ value: 27.561999999999998
1160
+ - type: ndcg_at_100
1161
+ value: 36.714999999999996
1162
+ - type: ndcg_at_1000
1163
+ value: 39.564
1164
+ - type: ndcg_at_20
1165
+ value: 31.133
1166
+ - type: ndcg_at_3
1167
+ value: 21.464
1168
+ - type: ndcg_at_5
1169
+ value: 23.775
1170
+ - type: precision_at_1
1171
+ value: 17.442
1172
+ - type: precision_at_10
1173
+ value: 7.663
1174
+ - type: precision_at_100
1175
+ value: 1.566
1176
+ - type: precision_at_1000
1177
+ value: 0.197
1178
+ - type: precision_at_20
1179
+ value: 5.07
1180
+ - type: precision_at_3
1181
+ value: 14.302000000000001
1182
+ - type: precision_at_5
1183
+ value: 11.07
1184
+ - type: recall_at_1
1185
+ value: 10.001999999999999
1186
+ - type: recall_at_10
1187
+ value: 39.982
1188
+ - type: recall_at_100
1189
+ value: 76.165
1190
+ - type: recall_at_1000
1191
+ value: 94.487
1192
+ - type: recall_at_20
1193
+ value: 51.559999999999995
1194
+ - type: recall_at_3
1195
+ value: 23.274
1196
+ - type: recall_at_5
1197
+ value: 29.842000000000002
1198
+ - task:
1199
+ type: retrieval
1200
+ dataset:
1201
+ type: mteb/mrtydi
1202
+ name: MTEB MrTydiRetrieval (japanese)
1203
+ config: japanese
1204
+ split: test
1205
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
1206
+ metrics:
1207
+ - type: map_at_1
1208
+ value: 6.412
1209
+ - type: map_at_10
1210
+ value: 12.008000000000001
1211
+ - type: map_at_100
1212
+ value: 13.138
1213
+ - type: map_at_1000
1214
+ value: 13.227
1215
+ - type: map_at_20
1216
+ value: 12.669
1217
+ - type: map_at_3
1218
+ value: 9.738
1219
+ - type: map_at_5
1220
+ value: 10.852
1221
+ - type: mrr_at_1
1222
+ value: 8.056000000000001
1223
+ - type: mrr_at_10
1224
+ value: 14.155999999999999
1225
+ - type: mrr_at_100
1226
+ value: 15.232000000000001
1227
+ - type: mrr_at_1000
1228
+ value: 15.308
1229
+ - type: mrr_at_20
1230
+ value: 14.780999999999999
1231
+ - type: mrr_at_3
1232
+ value: 11.806
1233
+ - type: mrr_at_5
1234
+ value: 12.992999999999999
1235
+ - type: ndcg_at_1
1236
+ value: 8.056000000000001
1237
+ - type: ndcg_at_10
1238
+ value: 16.048000000000002
1239
+ - type: ndcg_at_100
1240
+ value: 21.833
1241
+ - type: ndcg_at_1000
1242
+ value: 24.282
1243
+ - type: ndcg_at_20
1244
+ value: 18.398
1245
+ - type: ndcg_at_3
1246
+ value: 11.317
1247
+ - type: ndcg_at_5
1248
+ value: 13.319
1249
+ - type: precision_at_1
1250
+ value: 8.056000000000001
1251
+ - type: precision_at_10
1252
+ value: 3.292
1253
+ - type: precision_at_100
1254
+ value: 0.664
1255
+ - type: precision_at_1000
1256
+ value: 0.091
1257
+ - type: precision_at_20
1258
+ value: 2.181
1259
+ - type: precision_at_3
1260
+ value: 5.833
1261
+ - type: precision_at_5
1262
+ value: 4.583
1263
+ - type: recall_at_1
1264
+ value: 6.412
1265
+ - type: recall_at_10
1266
+ value: 26.480999999999998
1267
+ - type: recall_at_100
1268
+ value: 53.217999999999996
1269
+ - type: recall_at_1000
1270
+ value: 71.528
1271
+ - type: recall_at_20
1272
+ value: 35.44
1273
+ - type: recall_at_3
1274
+ value: 13.866
1275
+ - type: recall_at_5
1276
+ value: 18.519
1277
+ - task:
1278
+ type: retrieval
1279
+ dataset:
1280
+ type: mteb/miracl-hard-negatives
1281
+ name: MTEB MIRACLRetrievalHardNegatives (ko)
1282
+ config: ko
1283
+ split: dev
1284
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
1285
+ metrics:
1286
+ - type: map_at_1
1287
+ value: 19.03
1288
+ - type: map_at_10
1289
+ value: 30.987
1290
+ - type: map_at_100
1291
+ value: 33.248
1292
+ - type: map_at_1000
1293
+ value: 33.452
1294
+ - type: map_at_20
1295
+ value: 32.298
1296
+ - type: map_at_3
1297
+ value: 26.240999999999996
1298
+ - type: map_at_5
1299
+ value: 28.899
1300
+ - type: mrr_at_1
1301
+ value: 28.638
1302
+ - type: mrr_at_10
1303
+ value: 42.082
1304
+ - type: mrr_at_100
1305
+ value: 43.034
1306
+ - type: mrr_at_1000
1307
+ value: 43.059
1308
+ - type: mrr_at_20
1309
+ value: 42.736000000000004
1310
+ - type: mrr_at_3
1311
+ value: 38.340999999999994
1312
+ - type: mrr_at_5
1313
+ value: 40.548
1314
+ - type: ndcg_at_1
1315
+ value: 28.638
1316
+ - type: ndcg_at_10
1317
+ value: 39.284
1318
+ - type: ndcg_at_100
1319
+ value: 47.157
1320
+ - type: ndcg_at_1000
1321
+ value: 49.864000000000004
1322
+ - type: ndcg_at_20
1323
+ value: 42.719
1324
+ - type: ndcg_at_3
1325
+ value: 32.521
1326
+ - type: ndcg_at_5
1327
+ value: 35.57
1328
+ - type: precision_at_1
1329
+ value: 28.638
1330
+ - type: precision_at_10
1331
+ value: 10.657
1332
+ - type: precision_at_100
1333
+ value: 1.8870000000000002
1334
+ - type: precision_at_1000
1335
+ value: 0.241
1336
+ - type: precision_at_20
1337
+ value: 6.643000000000001
1338
+ - type: precision_at_3
1339
+ value: 19.718
1340
+ - type: precision_at_5
1341
+ value: 15.493000000000002
1342
+ - type: recall_at_1
1343
+ value: 19.03
1344
+ - type: recall_at_10
1345
+ value: 51.961999999999996
1346
+ - type: recall_at_100
1347
+ value: 79.836
1348
+ - type: recall_at_1000
1349
+ value: 95.3
1350
+ - type: recall_at_20
1351
+ value: 62.643
1352
+ - type: recall_at_3
1353
+ value: 33.1
1354
+ - type: recall_at_5
1355
+ value: 41.791
1356
+ - task:
1357
+ type: retrieval
1358
+ dataset:
1359
+ type: mteb/mrtydi
1360
+ name: MTEB MrTydiRetrieval (korean)
1361
+ config: korean
1362
+ split: test
1363
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
1364
+ metrics:
1365
+ - type: map_at_1
1366
+ value: 18.131
1367
+ - type: map_at_10
1368
+ value: 23.858999999999998
1369
+ - type: map_at_100
1370
+ value: 24.507
1371
+ - type: map_at_1000
1372
+ value: 24.582
1373
+ - type: map_at_20
1374
+ value: 24.152
1375
+ - type: map_at_3
1376
+ value: 22.09
1377
+ - type: map_at_5
1378
+ value: 22.971
1379
+ - type: mrr_at_1
1380
+ value: 20.19
1381
+ - type: mrr_at_10
1382
+ value: 26.249
1383
+ - type: mrr_at_100
1384
+ value: 26.871000000000002
1385
+ - type: mrr_at_1000
1386
+ value: 26.936
1387
+ - type: mrr_at_20
1388
+ value: 26.535999999999998
1389
+ - type: mrr_at_3
1390
+ value: 24.465999999999998
1391
+ - type: mrr_at_5
1392
+ value: 25.356
1393
+ - type: ndcg_at_1
1394
+ value: 20.19
1395
+ - type: ndcg_at_10
1396
+ value: 27.700000000000003
1397
+ - type: ndcg_at_100
1398
+ value: 31.436999999999998
1399
+ - type: ndcg_at_1000
1400
+ value: 33.690999999999995
1401
+ - type: ndcg_at_20
1402
+ value: 28.716
1403
+ - type: ndcg_at_3
1404
+ value: 23.985
1405
+ - type: ndcg_at_5
1406
+ value: 25.539
1407
+ - type: precision_at_1
1408
+ value: 20.19
1409
+ - type: precision_at_10
1410
+ value: 4.181
1411
+ - type: precision_at_100
1412
+ value: 0.637
1413
+ - type: precision_at_1000
1414
+ value: 0.08499999999999999
1415
+ - type: precision_at_20
1416
+ value: 2.316
1417
+ - type: precision_at_3
1418
+ value: 10.135
1419
+ - type: precision_at_5
1420
+ value: 6.888
1421
+ - type: recall_at_1
1422
+ value: 18.131
1423
+ - type: recall_at_10
1424
+ value: 37.49
1425
+ - type: recall_at_100
1426
+ value: 55.859
1427
+ - type: recall_at_1000
1428
+ value: 73.634
1429
+ - type: recall_at_20
1430
+ value: 41.291
1431
+ - type: recall_at_3
1432
+ value: 27.276
1433
+ - type: recall_at_5
1434
+ value: 30.918
1435
+ - task:
1436
+ type: retrieval
1437
+ dataset:
1438
+ type: mteb/miracl-hard-negatives
1439
+ name: MTEB MIRACLRetrievalHardNegatives (ru)
1440
+ config: ru
1441
+ split: dev
1442
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
1443
+ metrics:
1444
+ - type: map_at_1
1445
+ value: 12.045
1446
+ - type: map_at_10
1447
+ value: 21.751
1448
+ - type: map_at_100
1449
+ value: 24.517
1450
+ - type: map_at_1000
1451
+ value: 24.726
1452
+ - type: map_at_20
1453
+ value: 23.142
1454
+ - type: map_at_3
1455
+ value: 17.546
1456
+ - type: map_at_5
1457
+ value: 19.555
1458
+ - type: mrr_at_1
1459
+ value: 22.900000000000002
1460
+ - type: mrr_at_10
1461
+ value: 33.946
1462
+ - type: mrr_at_100
1463
+ value: 35.199999999999996
1464
+ - type: mrr_at_1000
1465
+ value: 35.233
1466
+ - type: mrr_at_20
1467
+ value: 34.791
1468
+ - type: mrr_at_3
1469
+ value: 30.099999999999998
1470
+ - type: mrr_at_5
1471
+ value: 32.18
1472
+ - type: ndcg_at_1
1473
+ value: 22.900000000000002
1474
+ - type: ndcg_at_10
1475
+ value: 29.587000000000003
1476
+ - type: ndcg_at_100
1477
+ value: 39.934999999999995
1478
+ - type: ndcg_at_1000
1479
+ value: 42.857
1480
+ - type: ndcg_at_20
1481
+ value: 33.531
1482
+ - type: ndcg_at_3
1483
+ value: 23.361
1484
+ - type: ndcg_at_5
1485
+ value: 25.485999999999997
1486
+ - type: precision_at_1
1487
+ value: 22.900000000000002
1488
+ - type: precision_at_10
1489
+ value: 9.370000000000001
1490
+ - type: precision_at_100
1491
+ value: 2.1
1492
+ - type: precision_at_1000
1493
+ value: 0.263
1494
+ - type: precision_at_20
1495
+ value: 6.4399999999999995
1496
+ - type: precision_at_3
1497
+ value: 15.867
1498
+ - type: precision_at_5
1499
+ value: 12.86
1500
+ - type: recall_at_1
1501
+ value: 12.045
1502
+ - type: recall_at_10
1503
+ value: 39.612
1504
+ - type: recall_at_100
1505
+ value: 76.132
1506
+ - type: recall_at_1000
1507
+ value: 92.643
1508
+ - type: recall_at_20
1509
+ value: 51.13799999999999
1510
+ - type: recall_at_3
1511
+ value: 22.408
1512
+ - type: recall_at_5
1513
+ value: 28.794999999999998
1514
+ - task:
1515
+ type: retrieval
1516
+ dataset:
1517
+ type: mteb/mrtydi
1518
+ name: MTEB MrTydiRetrieval (russian)
1519
+ config: russian
1520
+ split: test
1521
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
1522
+ metrics:
1523
+ - type: map_at_1
1524
+ value: 12.127
1525
+ - type: map_at_10
1526
+ value: 18.472
1527
+ - type: map_at_100
1528
+ value: 19.395
1529
+ - type: map_at_1000
1530
+ value: 19.477
1531
+ - type: map_at_20
1532
+ value: 18.966
1533
+ - type: map_at_3
1534
+ value: 16.309
1535
+ - type: map_at_5
1536
+ value: 17.53
1537
+ - type: mrr_at_1
1538
+ value: 13.568
1539
+ - type: mrr_at_10
1540
+ value: 20.04
1541
+ - type: mrr_at_100
1542
+ value: 20.928
1543
+ - type: mrr_at_1000
1544
+ value: 20.995
1545
+ - type: mrr_at_20
1546
+ value: 20.538
1547
+ - type: mrr_at_3
1548
+ value: 17.855999999999998
1549
+ - type: mrr_at_5
1550
+ value: 19.027
1551
+ - type: ndcg_at_1
1552
+ value: 13.568
1553
+ - type: ndcg_at_10
1554
+ value: 22.509
1555
+ - type: ndcg_at_100
1556
+ value: 27.230999999999998
1557
+ - type: ndcg_at_1000
1558
+ value: 29.444
1559
+ - type: ndcg_at_20
1560
+ value: 24.277
1561
+ - type: ndcg_at_3
1562
+ value: 18.108
1563
+ - type: ndcg_at_5
1564
+ value: 20.252
1565
+ - type: precision_at_1
1566
+ value: 13.568
1567
+ - type: precision_at_10
1568
+ value: 3.769
1569
+ - type: precision_at_100
1570
+ value: 0.635
1571
+ - type: precision_at_1000
1572
+ value: 0.08499999999999999
1573
+ - type: precision_at_20
1574
+ value: 2.271
1575
+ - type: precision_at_3
1576
+ value: 8.107000000000001
1577
+ - type: precision_at_5
1578
+ value: 5.99
1579
+ - type: recall_at_1
1580
+ value: 12.127
1581
+ - type: recall_at_10
1582
+ value: 33.617999999999995
1583
+ - type: recall_at_100
1584
+ value: 55.662
1585
+ - type: recall_at_1000
1586
+ value: 72.697
1587
+ - type: recall_at_20
1588
+ value: 40.369
1589
+ - type: recall_at_3
1590
+ value: 21.91
1591
+ - type: recall_at_5
1592
+ value: 26.985
1593
+ - task:
1594
+ type: retrieval
1595
+ dataset:
1596
+ type: mteb/miracl-hard-negatives
1597
+ name: MTEB MIRACLRetrievalHardNegatives (es)
1598
+ config: es
1599
+ split: dev
1600
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
1601
+ metrics:
1602
+ - type: map_at_1
1603
+ value: 8.068
1604
+ - type: map_at_10
1605
+ value: 19.563
1606
+ - type: map_at_100
1607
+ value: 24.198
1608
+ - type: map_at_1000
1609
+ value: 24.532
1610
+ - type: map_at_20
1611
+ value: 21.929000000000002
1612
+ - type: map_at_3
1613
+ value: 13.652000000000001
1614
+ - type: map_at_5
1615
+ value: 16.226
1616
+ - type: mrr_at_1
1617
+ value: 30.092999999999996
1618
+ - type: mrr_at_10
1619
+ value: 43.312
1620
+ - type: mrr_at_100
1621
+ value: 44.230999999999995
1622
+ - type: mrr_at_1000
1623
+ value: 44.252
1624
+ - type: mrr_at_20
1625
+ value: 43.891000000000005
1626
+ - type: mrr_at_3
1627
+ value: 39.428999999999995
1628
+ - type: mrr_at_5
1629
+ value: 41.682
1630
+ - type: ndcg_at_1
1631
+ value: 30.092999999999996
1632
+ - type: ndcg_at_10
1633
+ value: 30.218
1634
+ - type: ndcg_at_100
1635
+ value: 43.716
1636
+ - type: ndcg_at_1000
1637
+ value: 47.355000000000004
1638
+ - type: ndcg_at_20
1639
+ value: 35.268
1640
+ - type: ndcg_at_3
1641
+ value: 27.232
1642
+ - type: ndcg_at_5
1643
+ value: 26.874
1644
+ - type: precision_at_1
1645
+ value: 30.092999999999996
1646
+ - type: precision_at_10
1647
+ value: 15.293000000000001
1648
+ - type: precision_at_100
1649
+ value: 3.531
1650
+ - type: precision_at_1000
1651
+ value: 0.437
1652
+ - type: precision_at_20
1653
+ value: 10.693999999999999
1654
+ - type: precision_at_3
1655
+ value: 23.868000000000002
1656
+ - type: precision_at_5
1657
+ value: 19.938
1658
+ - type: recall_at_1
1659
+ value: 8.068
1660
+ - type: recall_at_10
1661
+ value: 35.778999999999996
1662
+ - type: recall_at_100
1663
+ value: 76.36699999999999
1664
+ - type: recall_at_1000
1665
+ value: 94.38499999999999
1666
+ - type: recall_at_20
1667
+ value: 48.014
1668
+ - type: recall_at_3
1669
+ value: 17.825
1670
+ - type: recall_at_5
1671
+ value: 24.163999999999998
1672
+ - task:
1673
+ type: retrieval
1674
+ dataset:
1675
+ type: mteb/miracl-hard-negatives
1676
+ name: MTEB MIRACLRetrievalHardNegatives (sw)
1677
+ config: sw
1678
+ split: dev
1679
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
1680
+ metrics:
1681
+ - type: map_at_1
1682
+ value: 12.568999999999999
1683
+ - type: map_at_10
1684
+ value: 18.478
1685
+ - type: map_at_100
1686
+ value: 19.584
1687
+ - type: map_at_1000
1688
+ value: 19.714000000000002
1689
+ - type: map_at_20
1690
+ value: 19.073999999999998
1691
+ - type: map_at_3
1692
+ value: 16.275000000000002
1693
+ - type: map_at_5
1694
+ value: 17.53
1695
+ - type: mrr_at_1
1696
+ value: 20.124
1697
+ - type: mrr_at_10
1698
+ value: 25.951
1699
+ - type: mrr_at_100
1700
+ value: 26.812
1701
+ - type: mrr_at_1000
1702
+ value: 26.876
1703
+ - type: mrr_at_20
1704
+ value: 26.41
1705
+ - type: mrr_at_3
1706
+ value: 23.893
1707
+ - type: mrr_at_5
1708
+ value: 25.055
1709
+ - type: ndcg_at_1
1710
+ value: 20.124
1711
+ - type: ndcg_at_10
1712
+ value: 23.064999999999998
1713
+ - type: ndcg_at_100
1714
+ value: 28.193
1715
+ - type: ndcg_at_1000
1716
+ value: 31.313000000000002
1717
+ - type: ndcg_at_20
1718
+ value: 24.921
1719
+ - type: ndcg_at_3
1720
+ value: 19.436
1721
+ - type: ndcg_at_5
1722
+ value: 20.990000000000002
1723
+ - type: precision_at_1
1724
+ value: 20.124
1725
+ - type: precision_at_10
1726
+ value: 5.021
1727
+ - type: precision_at_100
1728
+ value: 0.927
1729
+ - type: precision_at_1000
1730
+ value: 0.13699999999999998
1731
+ - type: precision_at_20
1732
+ value: 3.1329999999999996
1733
+ - type: precision_at_3
1734
+ value: 10.719
1735
+ - type: precision_at_5
1736
+ value: 8.091
1737
+ - type: recall_at_1
1738
+ value: 12.568999999999999
1739
+ - type: recall_at_10
1740
+ value: 29.727999999999998
1741
+ - type: recall_at_100
1742
+ value: 50.70099999999999
1743
+ - type: recall_at_1000
1744
+ value: 71.856
1745
+ - type: recall_at_20
1746
+ value: 35.831
1747
+ - type: recall_at_3
1748
+ value: 19.758
1749
+ - type: recall_at_5
1750
+ value: 24.035999999999998
1751
+ - task:
1752
+ type: retrieval
1753
+ dataset:
1754
+ type: mteb/mrtydi
1755
+ name: MTEB MrTydiRetrieval (swahili)
1756
+ config: swahili
1757
+ split: test
1758
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
1759
+ metrics:
1760
+ - type: map_at_1
1761
+ value: 15.597
1762
+ - type: map_at_10
1763
+ value: 23.596
1764
+ - type: map_at_100
1765
+ value: 24.32
1766
+ - type: map_at_1000
1767
+ value: 24.377
1768
+ - type: map_at_20
1769
+ value: 23.913999999999998
1770
+ - type: map_at_3
1771
+ value: 21.484
1772
+ - type: map_at_5
1773
+ value: 22.647000000000002
1774
+ - type: mrr_at_1
1775
+ value: 16.866
1776
+ - type: mrr_at_10
1777
+ value: 24.633
1778
+ - type: mrr_at_100
1779
+ value: 25.291000000000004
1780
+ - type: mrr_at_1000
1781
+ value: 25.346999999999998
1782
+ - type: mrr_at_20
1783
+ value: 24.907
1784
+ - type: mrr_at_3
1785
+ value: 22.587
1786
+ - type: mrr_at_5
1787
+ value: 23.677
1788
+ - type: ndcg_at_1
1789
+ value: 16.866
1790
+ - type: ndcg_at_10
1791
+ value: 27.749000000000002
1792
+ - type: ndcg_at_100
1793
+ value: 31.769
1794
+ - type: ndcg_at_1000
1795
+ value: 33.61
1796
+ - type: ndcg_at_20
1797
+ value: 28.849000000000004
1798
+ - type: ndcg_at_3
1799
+ value: 23.462
1800
+ - type: ndcg_at_5
1801
+ value: 25.491000000000003
1802
+ - type: precision_at_1
1803
+ value: 16.866
1804
+ - type: precision_at_10
1805
+ value: 4.343
1806
+ - type: precision_at_100
1807
+ value: 0.649
1808
+ - type: precision_at_1000
1809
+ value: 0.08099999999999999
1810
+ - type: precision_at_20
1811
+ value: 2.41
1812
+ - type: precision_at_3
1813
+ value: 10.149
1814
+ - type: precision_at_5
1815
+ value: 7.134
1816
+ - type: recall_at_1
1817
+ value: 15.597
1818
+ - type: recall_at_10
1819
+ value: 39.652
1820
+ - type: recall_at_100
1821
+ value: 59.477999999999994
1822
+ - type: recall_at_1000
1823
+ value: 74.35300000000001
1824
+ - type: recall_at_20
1825
+ value: 43.905
1826
+ - type: recall_at_3
1827
+ value: 28.109
1828
+ - type: recall_at_5
1829
+ value: 32.934999999999995
1830
+ - task:
1831
+ type: retrieval
1832
+ dataset:
1833
+ type: mteb/miracl-hard-negatives
1834
+ name: MTEB MIRACLRetrievalHardNegatives (te)
1835
+ config: te
1836
+ split: dev
1837
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
1838
+ metrics:
1839
+ - type: map_at_1
1840
+ value: 21.236
1841
+ - type: map_at_10
1842
+ value: 29.841
1843
+ - type: map_at_100
1844
+ value: 30.729
1845
+ - type: map_at_1000
1846
+ value: 30.817
1847
+ - type: map_at_20
1848
+ value: 30.331999999999997
1849
+ - type: map_at_3
1850
+ value: 27.154
1851
+ - type: map_at_5
1852
+ value: 28.719
1853
+ - type: mrr_at_1
1854
+ value: 21.618000000000002
1855
+ - type: mrr_at_10
1856
+ value: 30.192999999999998
1857
+ - type: mrr_at_100
1858
+ value: 31.067
1859
+ - type: mrr_at_1000
1860
+ value: 31.148999999999997
1861
+ - type: mrr_at_20
1862
+ value: 30.668
1863
+ - type: mrr_at_3
1864
+ value: 27.576
1865
+ - type: mrr_at_5
1866
+ value: 29.110000000000003
1867
+ - type: ndcg_at_1
1868
+ value: 21.618000000000002
1869
+ - type: ndcg_at_10
1870
+ value: 34.633
1871
+ - type: ndcg_at_100
1872
+ value: 39.425
1873
+ - type: ndcg_at_1000
1874
+ value: 41.762
1875
+ - type: ndcg_at_20
1876
+ value: 36.428
1877
+ - type: ndcg_at_3
1878
+ value: 29.189
1879
+ - type: ndcg_at_5
1880
+ value: 31.995
1881
+ - type: precision_at_1
1882
+ value: 21.618000000000002
1883
+ - type: precision_at_10
1884
+ value: 5.1209999999999996
1885
+ - type: precision_at_100
1886
+ value: 0.751
1887
+ - type: precision_at_1000
1888
+ value: 0.094
1889
+ - type: precision_at_20
1890
+ value: 2.923
1891
+ - type: precision_at_3
1892
+ value: 11.876000000000001
1893
+ - type: precision_at_5
1894
+ value: 8.551
1895
+ - type: recall_at_1
1896
+ value: 21.236
1897
+ - type: recall_at_10
1898
+ value: 49.436
1899
+ - type: recall_at_100
1900
+ value: 72.94699999999999
1901
+ - type: recall_at_1000
1902
+ value: 91.405
1903
+ - type: recall_at_20
1904
+ value: 56.562
1905
+ - type: recall_at_3
1906
+ value: 34.682
1907
+ - type: recall_at_5
1908
+ value: 41.445
1909
+ - task:
1910
+ type: retrieval
1911
+ dataset:
1912
+ type: mteb/mrtydi
1913
+ name: MTEB MrTydiRetrieval (telugu)
1914
+ config: telugu
1915
+ split: test
1916
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
1917
+ metrics:
1918
+ - type: map_at_1
1919
+ value: 16.872999999999998
1920
+ - type: map_at_10
1921
+ value: 26.543
1922
+ - type: map_at_100
1923
+ value: 27.3
1924
+ - type: map_at_1000
1925
+ value: 27.389999999999997
1926
+ - type: map_at_20
1927
+ value: 26.883000000000003
1928
+ - type: map_at_3
1929
+ value: 23.735999999999997
1930
+ - type: map_at_5
1931
+ value: 25.113999999999997
1932
+ - type: mrr_at_1
1933
+ value: 17.492
1934
+ - type: mrr_at_10
1935
+ value: 27.233
1936
+ - type: mrr_at_100
1937
+ value: 27.950999999999997
1938
+ - type: mrr_at_1000
1939
+ value: 28.037
1940
+ - type: mrr_at_20
1941
+ value: 27.556000000000004
1942
+ - type: mrr_at_3
1943
+ value: 24.458
1944
+ - type: mrr_at_5
1945
+ value: 25.874999999999996
1946
+ - type: ndcg_at_1
1947
+ value: 17.492
1948
+ - type: ndcg_at_10
1949
+ value: 32.013999999999996
1950
+ - type: ndcg_at_100
1951
+ value: 36.299
1952
+ - type: ndcg_at_1000
1953
+ value: 38.868
1954
+ - type: ndcg_at_20
1955
+ value: 33.238
1956
+ - type: ndcg_at_3
1957
+ value: 26.133
1958
+ - type: ndcg_at_5
1959
+ value: 28.632999999999996
1960
+ - type: precision_at_1
1961
+ value: 17.492
1962
+ - type: precision_at_10
1963
+ value: 5.108
1964
+ - type: precision_at_100
1965
+ value: 0.735
1966
+ - type: precision_at_1000
1967
+ value: 0.095
1968
+ - type: precision_at_20
1969
+ value: 2.81
1970
+ - type: precision_at_3
1971
+ value: 11.3
1972
+ - type: precision_at_5
1973
+ value: 8.019
1974
+ - type: recall_at_1
1975
+ value: 16.872999999999998
1976
+ - type: recall_at_10
1977
+ value: 48.684
1978
+ - type: recall_at_100
1979
+ value: 70.04599999999999
1980
+ - type: recall_at_1000
1981
+ value: 90.635
1982
+ - type: recall_at_20
1983
+ value: 53.483000000000004
1984
+ - type: recall_at_3
1985
+ value: 32.353
1986
+ - type: recall_at_5
1987
+ value: 38.39
1988
+ - task:
1989
+ type: retrieval
1990
+ dataset:
1991
+ type: mteb/miracl-hard-negatives
1992
+ name: MTEB MIRACLRetrievalHardNegatives (th)
1993
+ config: th
1994
+ split: dev
1995
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
1996
+ metrics:
1997
+ - type: map_at_1
1998
+ value: 19.205
1999
+ - type: map_at_10
2000
+ value: 32.704
2001
+ - type: map_at_100
2002
+ value: 34.519
2003
+ - type: map_at_1000
2004
+ value: 34.634
2005
+ - type: map_at_20
2006
+ value: 33.762
2007
+ - type: map_at_3
2008
+ value: 27.992
2009
+ - type: map_at_5
2010
+ value: 30.354999999999997
2011
+ - type: mrr_at_1
2012
+ value: 27.558
2013
+ - type: mrr_at_10
2014
+ value: 40.933
2015
+ - type: mrr_at_100
2016
+ value: 41.916
2017
+ - type: mrr_at_1000
2018
+ value: 41.946
2019
+ - type: mrr_at_20
2020
+ value: 41.54
2021
+ - type: mrr_at_3
2022
+ value: 37.312
2023
+ - type: mrr_at_5
2024
+ value: 39.393
2025
+ - type: ndcg_at_1
2026
+ value: 27.558
2027
+ - type: ndcg_at_10
2028
+ value: 41.038999999999994
2029
+ - type: ndcg_at_100
2030
+ value: 48.076
2031
+ - type: ndcg_at_1000
2032
+ value: 49.946
2033
+ - type: ndcg_at_20
2034
+ value: 44.03
2035
+ - type: ndcg_at_3
2036
+ value: 33.013999999999996
2037
+ - type: ndcg_at_5
2038
+ value: 36.519
2039
+ - type: precision_at_1
2040
+ value: 27.558
2041
+ - type: precision_at_10
2042
+ value: 9.523
2043
+ - type: precision_at_100
2044
+ value: 1.52
2045
+ - type: precision_at_1000
2046
+ value: 0.178
2047
+ - type: precision_at_20
2048
+ value: 5.778
2049
+ - type: precision_at_3
2050
+ value: 18.963
2051
+ - type: precision_at_5
2052
+ value: 14.379
2053
+ - type: recall_at_1
2054
+ value: 19.205
2055
+ - type: recall_at_10
2056
+ value: 56.94200000000001
2057
+ - type: recall_at_100
2058
+ value: 84.937
2059
+ - type: recall_at_1000
2060
+ value: 96.86399999999999
2061
+ - type: recall_at_20
2062
+ value: 66.719
2063
+ - type: recall_at_3
2064
+ value: 36.536
2065
+ - type: recall_at_5
2066
+ value: 44.854
2067
+ - task:
2068
+ type: retrieval
2069
+ dataset:
2070
+ type: mteb/mrtydi
2071
+ name: MTEB MrTydiRetrieval (thai)
2072
+ config: thai
2073
+ split: test
2074
+ revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
2075
+ metrics:
2076
+ - type: map_at_1
2077
+ value: 17.913
2078
+ - type: map_at_10
2079
+ value: 29.006999999999998
2080
+ - type: map_at_100
2081
+ value: 30.184
2082
+ - type: map_at_1000
2083
+ value: 30.249
2084
+ - type: map_at_20
2085
+ value: 29.799999999999997
2086
+ - type: map_at_3
2087
+ value: 25.14
2088
+ - type: map_at_5
2089
+ value: 27.172
2090
+ - type: mrr_at_1
2091
+ value: 19.664
2092
+ - type: mrr_at_10
2093
+ value: 30.891000000000002
2094
+ - type: mrr_at_100
2095
+ value: 31.896
2096
+ - type: mrr_at_1000
2097
+ value: 31.951
2098
+ - type: mrr_at_20
2099
+ value: 31.566
2100
+ - type: mrr_at_3
2101
+ value: 27.128999999999998
2102
+ - type: mrr_at_5
2103
+ value: 29.255
2104
+ - type: ndcg_at_1
2105
+ value: 19.664
2106
+ - type: ndcg_at_10
2107
+ value: 35.674
2108
+ - type: ndcg_at_100
2109
+ value: 40.969
2110
+ - type: ndcg_at_1000
2111
+ value: 42.698
2112
+ - type: ndcg_at_20
2113
+ value: 38.345
2114
+ - type: ndcg_at_3
2115
+ value: 27.826
2116
+ - type: ndcg_at_5
2117
+ value: 31.493
2118
+ - type: precision_at_1
2119
+ value: 19.664
2120
+ - type: precision_at_10
2121
+ value: 6.143
2122
+ - type: precision_at_100
2123
+ value: 0.8909999999999999
2124
+ - type: precision_at_1000
2125
+ value: 0.105
2126
+ - type: precision_at_20
2127
+ value: 3.66
2128
+ - type: precision_at_3
2129
+ value: 12.353
2130
+ - type: precision_at_5
2131
+ value: 9.411999999999999
2132
+ - type: recall_at_1
2133
+ value: 17.913
2134
+ - type: recall_at_10
2135
+ value: 54.705999999999996
2136
+ - type: recall_at_100
2137
+ value: 78.557
2138
+ - type: recall_at_1000
2139
+ value: 91.835
2140
+ - type: recall_at_20
2141
+ value: 64.846
2142
+ - type: recall_at_3
2143
+ value: 33.669
2144
+ - type: recall_at_5
2145
+ value: 42.297000000000004
2146
+ - task:
2147
+ type: retrieval
2148
+ dataset:
2149
+ type: mteb/miracl-hard-negatives
2150
+ name: MTEB MIRACLRetrievalHardNegatives (yo)
2151
+ config: yo
2152
+ split: dev
2153
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
2154
+ metrics:
2155
+ - type: map_at_1
2156
+ value: 7.002999999999999
2157
+ - type: map_at_10
2158
+ value: 9.567
2159
+ - type: map_at_100
2160
+ value: 10.126
2161
+ - type: map_at_1000
2162
+ value: 10.209
2163
+ - type: map_at_20
2164
+ value: 9.944
2165
+ - type: map_at_3
2166
+ value: 8.929
2167
+ - type: map_at_5
2168
+ value: 8.929
2169
+ - type: mrr_at_1
2170
+ value: 7.563000000000001
2171
+ - type: mrr_at_10
2172
+ value: 10.503
2173
+ - type: mrr_at_100
2174
+ value: 11.151
2175
+ - type: mrr_at_1000
2176
+ value: 11.232000000000001
2177
+ - type: mrr_at_20
2178
+ value: 10.965
2179
+ - type: mrr_at_3
2180
+ value: 9.804
2181
+ - type: mrr_at_5
2182
+ value: 9.804
2183
+ - type: ndcg_at_1
2184
+ value: 7.563000000000001
2185
+ - type: ndcg_at_10
2186
+ value: 11.304
2187
+ - type: ndcg_at_100
2188
+ value: 14.526
2189
+ - type: ndcg_at_1000
2190
+ value: 17.253
2191
+ - type: ndcg_at_20
2192
+ value: 12.766
2193
+ - type: ndcg_at_3
2194
+ value: 9.797
2195
+ - type: ndcg_at_5
2196
+ value: 9.754999999999999
2197
+ - type: precision_at_1
2198
+ value: 7.563000000000001
2199
+ - type: precision_at_10
2200
+ value: 1.765
2201
+ - type: precision_at_100
2202
+ value: 0.378
2203
+ - type: precision_at_1000
2204
+ value: 0.064
2205
+ - type: precision_at_20
2206
+ value: 1.261
2207
+ - type: precision_at_3
2208
+ value: 4.202
2209
+ - type: precision_at_5
2210
+ value: 2.521
2211
+ - type: recall_at_1
2212
+ value: 7.002999999999999
2213
+ - type: recall_at_10
2214
+ value: 16.036
2215
+ - type: recall_at_100
2216
+ value: 31.302999999999997
2217
+ - type: recall_at_1000
2218
+ value: 53.010999999999996
2219
+ - type: recall_at_20
2220
+ value: 21.429000000000002
2221
+ - type: recall_at_3
2222
+ value: 11.415000000000001
2223
+ - type: recall_at_5
2224
+ value: 11.415000000000001
2225
+ - task:
2226
+ type: retrieval
2227
+ dataset:
2228
+ type: mteb/miracl-hard-negatives
2229
+ name: MTEB MIRACLRetrievalHardNegatives (zh)
2230
+ config: zh
2231
+ split: dev
2232
+ revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
2233
+ metrics:
2234
+ - type: map_at_1
2235
+ value: 8.341999999999999
2236
+ - type: map_at_10
2237
+ value: 18.393
2238
+ - type: map_at_100
2239
+ value: 21.796
2240
+ - type: map_at_1000
2241
+ value: 21.932
2242
+ - type: map_at_20
2243
+ value: 20.238999999999997
2244
+ - type: map_at_3
2245
+ value: 13.386999999999999
2246
+ - type: map_at_5
2247
+ value: 15.568000000000001
2248
+ - type: mrr_at_1
2249
+ value: 15.522
2250
+ - type: mrr_at_10
2251
+ value: 28.386
2252
+ - type: mrr_at_100
2253
+ value: 29.906
2254
+ - type: mrr_at_1000
2255
+ value: 29.925
2256
+ - type: mrr_at_20
2257
+ value: 29.413
2258
+ - type: mrr_at_3
2259
+ value: 23.707
2260
+ - type: mrr_at_5
2261
+ value: 26.073
2262
+ - type: ndcg_at_1
2263
+ value: 15.522
2264
+ - type: ndcg_at_10
2265
+ value: 26.904
2266
+ - type: ndcg_at_100
2267
+ value: 39.336
2268
+ - type: ndcg_at_1000
2269
+ value: 41.244
2270
+ - type: ndcg_at_20
2271
+ value: 32.04
2272
+ - type: ndcg_at_3
2273
+ value: 18.34
2274
+ - type: ndcg_at_5
2275
+ value: 21.29
2276
+ - type: precision_at_1
2277
+ value: 15.522
2278
+ - type: precision_at_10
2279
+ value: 9.084
2280
+ - type: precision_at_100
2281
+ value: 2.1149999999999998
2282
+ - type: precision_at_1000
2283
+ value: 0.244
2284
+ - type: precision_at_20
2285
+ value: 6.5009999999999994
2286
+ - type: precision_at_3
2287
+ value: 13.232
2288
+ - type: precision_at_5
2289
+ value: 11.552
2290
+ - type: recall_at_1
2291
+ value: 8.341999999999999
2292
+ - type: recall_at_10
2293
+ value: 40.553
2294
+ - type: recall_at_100
2295
+ value: 86.33
2296
+ - type: recall_at_1000
2297
+ value: 97.24199999999999
2298
+ - type: recall_at_20
2299
+ value: 56.589999999999996
2300
+ - type: recall_at_3
2301
+ value: 18.82
2302
+ - type: recall_at_5
2303
+ value: 26.304
2304
  widget:
2305
  - source_sentence: ما هي أفضل الفنادق في ايبوهبالقرب من Ipoh Parade Shopping Centre؟
2306
  sentences:
 
2372
  Zustand autoklaviert werden.
2373
  pipeline_tag: sentence-similarity
2374
  library_name: sentence-transformers
2375
+ license: mit
2376
  ---
2377
 
2378
  # SentenceTransformer
 
2383
 
2384
  ### Model Description
2385
  - **Model Type:** Sentence Transformer
2386
+ - **Base model:** [XLM-RoBERTa-base](https://huggingface.co/FacebookAI/xlm-roberta-base)
2387
  - **Maximum Sequence Length:** 512 tokens
2388
  - **Output Dimensionality:** 768 dimensions
2389
  - **Similarity Function:** Cosine Similarity
2390
+ - **Training Dataset:** [MS MARCO Hard Negatives](https://sbert.net/examples/training/ms_marco/README.html) (mined by a MiniLM cross-encoder)
2391
  <!-- - **Language:** Unknown -->
2392
+ - **License:** MIT
2393
 
2394
  ### Model Sources
2395
 
 
2421
  from sentence_transformers import SentenceTransformer
2422
 
2423
  # Download from the 🤗 Hub
2424
+ model = SentenceTransformer("anonymous202501/xlm-roberta-base-msmarco-webfaq")
2425
  # Run inference
2426
  sentences = [
2427
  'Muss der Deckel der TipBox beim Autoklavieren geöffnet werden?',