POrg commited on
Commit
cac74fe
·
verified ·
1 Parent(s): 0106c49

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - onnx
4
+ - transformers.js
5
+ - image-classification
6
+ - creativity-assessment
7
+ - beit
8
+ license: apache-2.0
9
+ datasets:
10
+ - figural-drawings
11
+ metrics:
12
+ - accuracy
13
+ pipeline_tag: image-classification
14
+ ---
15
+
16
+ # OCSAI-D Web (ONNX Quantized)
17
+
18
+ This is a quantized ONNX version of the [POrg/ocsai-d-web](https://huggingface.co/POrg/ocsai-d-web) model, optimized for web deployment with Transformers.js.
19
+
20
+ ## Model Description
21
+
22
+ This model assesses originality/creativity in figural drawings. It's a fine-tuned BEiT-large model that outputs a regression score indicating the creativity level of the input drawing.
23
+
24
+ ## Model Details
25
+
26
+ - **Base Model**: microsoft/beit-large-patch16-224-pt22k-ft22k
27
+ - **Task**: Image regression (creativity scoring)
28
+ - **Input**: 224x224 RGB images
29
+ - **Output**: Single regression score (0-1 range)
30
+ - **Quantization**: INT8 dynamic quantization
31
+ - **File Size**: ~300MB (vs 1.1GB original)
32
+
33
+ ## Usage with Transformers.js
34
+
35
+ ```javascript
36
+ import { pipeline } from '@xenova/transformers';
37
+
38
+ // Load the model
39
+ const classifier = await pipeline('image-classification', 'your-username/ocsai-d-web-onnx');
40
+
41
+ // Run inference on an image
42
+ const result = await classifier('path/to/drawing.jpg');
43
+ console.log(result);
44
+ ```
45
+
46
+ ## Important Notes
47
+
48
+ This model is specifically designed for creativity assessment of figural drawings. The output is a single regression score that needs to be post-processed according to the original paper's methodology.
49
+
50
+ ## Original Model
51
+
52
+ Based on [POrg/ocsai-d-web](https://huggingface.co/POrg/ocsai-d-web) - please refer to the original model for citation information and detailed usage instructions.
53
+
54
+ ## Performance
55
+
56
+ The quantized model provides significant size reduction (~4x smaller) while maintaining compatibility with Transformers.js for browser-based inference.