LXZ83419 commited on
Commit
1d1ed06
·
verified ·
1 Parent(s): b15da21

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -3
README.md CHANGED
@@ -1,3 +1,25 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # **Fine-Grained Preference Optimization Improves Spatial Reasoning in VLMs**
6
+ ![Teaser](images/main.jpg)
7
+ ______________________________________________________________________
8
+
9
+ ## 💡 Introduction
10
+ <div align="center">
11
+
12
+ <a href="https://plan-lab.github.io/projects/spatialreasoner/"><img src="https://img.shields.io/badge/Project-Page-blue?style=for-the-badge&logo=googlechrome&logoColor=white"></a>
13
+ <a href="https://arxiv.org/pdf/2506.21656"><img src="https://img.shields.io/badge/Arxiv-2506.21656-red?style=for-the-badge&logo=arxiv&logoColor=white"></a>
14
+ <a href="https://huggingface.co/PLAN-Lab/SpatialReasoner-R1"><img src="https://img.shields.io/badge/Hugging%20Face-Model-yellow?style=for-the-badge&logo=huggingface&logoColor=black"></a>
15
+
16
+ </div>
17
+
18
+ **Yifan Shen, Yuanzhe Liu, Jingyuan Zhu, Xu Cao, Xiaofeng Zhang, Yixiao He, Wenming Ye, James Matthew Rehg, Ismini Lourentzou**
19
+
20
+ Current Vision-Language Models (VLMs) struggle with fine-grained spatial reasoning, particularly when multi-step logic and precise spatial alignment are required. In this work, we introduce SpatialReasoner-R1, a novel VLM designed to address these limitations. First, we propose Multi-LLM Guided Monte Carlo Tree Search (M3CTS) and Fine-Grained Spatial Rewards methods to construct a high-quality dataset. Second, we use fine-grained Direct Preference Optimization (fDPO) to train our model. fDPO introduces segment-specific preference granularity for descriptive grounding and logical reasoning, achieving an average improvement of 4.1% over standard DPO across spatial quality tasks, and a 9.0% boost in spatial quantity tasks. To address the scarcity of multi-step spatial reasoning data, M3CTS enables collaborative exploration of diverse reasoning paths, significantly enriching spatial comprehension and logical coherence. Empirical evaluations demonstrate that SpatialReasoner-R1 sets a new state-of-the-art on SpatialRGPT-Bench, outperforming the strongest baseline by 9.8% in average accuracy, while maintaining competitive performance on general vision-language tasks.
21
+
22
+
23
+ ## Model Card Contact
24
+
25