Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +111 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +9 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1351.27 +/- 262.90
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34c9df29934d195f1823850562f929ee21053b54b96fc46b79b81e85025f27fe
|
3 |
+
size 129531
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d963b22cc10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d963b22cca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d963b22cd30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d963b22cdc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d963b22ce50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d963b22cee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d963b22cf70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d963b22d000>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d963b22d090>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d963b22d120>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d963b22d1b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d963b22d240>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d963b230880>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1689686344103745841,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"_last_obs": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEV/Tr8Szc0/DMV+vyxdmb7gJb28Ub2kP3xGhz5g7jW+LQ6mvRdcib/qwEI+w7unPqGxqT4WsQnAeL/5PoJzJTwnnxY/dWa0v1sLNz8iS6697suRvThNnMCnceW+jwofPlxtdz+DJCM/PV0SP6nqdr+kRJs/e0iMPgYk+j5Txt0/O3tdv+20fj4THXS/aP8hvmEX3D6uORNAG30vP7dVcj4+P22/6j2YPn9Nmz4hzRG+Sz+dv82pqL/95JK/xJ9hQGfaFL8aDq48SL4zvynO4TxcbXc/3NrIvz1dEj+p6na/Sk5nPxW+iD+VJ0S9xmWzP76lyj55aK2/umffvk9elL/qPLK+ZypwvwxCGj2WAM0/fqAFP/xHOb+6Af8+7WOPvVJRjj68t4y/evnqvs2Moj6U5xS/wmY7PGc0yj8hkvy/V2+Ev4MkIz89XRI/qep2v5GkwT+rdIe/6JLePkILjD9cAbs9w1m4voqI6r5lEsm/d0usPlY9kb6gZN8+dgZMwGfRHb60Q4c/27zAvbaIrT6lg4c9OA28P+Misr5dsRXAvh2CPranxT/+uUk/IbANQFdvhL+DJCM/PuHfv6nqdr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
46 |
+
},
|
47 |
+
"_last_episode_starts": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
50 |
+
},
|
51 |
+
"_last_original_obs": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABbrIe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8TPsPQAAAAAfwf+/AAAAALbooz0AAAAAMNn8PwAAAADAo4e6AAAAAIqi4j8AAAAApgwOPgAAAACK1v6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAckkWtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHD7xz0AAAAAKggAwAAAAADOT4O9AAAAAMXa4z8AAAAAVRUbPQAAAABy/OQ/AAAAABEUx70AAAAAurjyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmbnjQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB7d9I8AAAAAAZr2r8AAAAAUkqUPQAAAAAXOvk/AAAAAEZklb0AAAAAk7HwPwAAAAAHEB29AAAAAJ/x/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOF+82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHJfwvQAAAADyqgDAAAAAAKxvNb0AAAAA9BTzPwAAAAArA+M9AAAAAP5b+T8AAAAAhRIBvgAAAAAwqOa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
54 |
+
},
|
55 |
+
"_episode_num": 0,
|
56 |
+
"use_sde": true,
|
57 |
+
"sde_sample_freq": -1,
|
58 |
+
"_current_progress_remaining": 0.0,
|
59 |
+
"_stats_window_size": 100,
|
60 |
+
"ep_info_buffer": {
|
61 |
+
":type:": "<class 'collections.deque'>",
|
62 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUGXfyf+S+MAWyUTegDjAF0lEdAqlf7xsl9jXV9lChoBkdAlbsQ5R0lq2gHTegDaAhHQKpacR8twrF1fZQoaAZHQJfvVZyMkyFoB03oA2gIR0CqWqnLzPKMdX2UKGgGR0CWb0LEk0JoaAdN6ANoCEdAql+FTkyULXV9lChoBkdAlklsJ+lTFWgHTegDaAhHQKpkQyeqaPV1fZQoaAZHQJZQOAavRqpoB03oA2gIR0CqZzhH09QodX2UKGgGR0CYagMPjGT+aAdN6ANoCEdAqmeHiaRZEHV9lChoBkdAlknIb4rSVmgHTegDaAhHQKpvKXiR4hV1fZQoaAZHQJkRple4TbpoB03oA2gIR0CqdExkEs8QdX2UKGgGR0CXWfC/GlyjaAdN6ANoCEdAqna41R+BpnV9lChoBkdAlbPr9ETg22gHTegDaAhHQKp29JSzgMt1fZQoaAZHQJj1P8gpz91oB03oA2gIR0Cqe9ohQm/ndX2UKGgGR0CaKG+CsfaIaAdN6ANoCEdAqoC+BWgezXV9lChoBkdAmfGnqzJIUmgHTegDaAhHQKqDIIFeOXF1fZQoaAZHQJqh8NsnAqNoB03oA2gIR0Cqg1i7kGRndX2UKGgGR0CXyJ2USqVAaAdN6ANoCEdAqooWqFRHgHV9lChoBkdAmXw8GC7K72gHTegDaAhHQKqQgn/DLr51fZQoaAZHQHsOn4XXRPZoB03oA2gIR0CqkutKZlWfdX2UKGgGR0CEr8OhCdBjaAdN6ANoCEdAqpMkkIHC43V9lChoBkdAl1jvegte2WgHTegDaAhHQKqYDMDfWMF1fZQoaAZHQJaNIGVzIWBoB03oA2gIR0CqnMJF9a2XdX2UKGgGR0CYh7Ka5PM0aAdN6ANoCEdAqp8mce8wpXV9lChoBkdAmWfKw2VE/mgHTegDaAhHQKqfXh3JPqN1fZQoaAZHQJknFdIGyHFoB03oA2gIR0CqpN0jTrmhdX2UKGgGR0CKyVyT6i0waAdN6ANoCEdAqqwVyLhrFnV9lChoBkdAmboeBQN1AGgHTegDaAhHQKqu/eD3/Px1fZQoaAZHQJZxNsnAqNJoB03oA2gIR0CqrzQpWmxddX2UKGgGR0CZM9BeokzHaAdN6ANoCEdAqrQgHC4z8HV9lChoBkdAkduLUXpGF2gHTegDaAhHQKq4zL39JjF1fZQoaAZHQIOHL59E1EVoB03oA2gIR0Cquzvkili0dX2UKGgGR0BuATPGACnxaAdN6ANoCEdAqrtzL2YfGXV9lChoBkdAkbF0y1uzhWgHTegDaAhHQKrAY89Oh011fZQoaAZHQJTTDGR3eN1oB03oA2gIR0CqxrS7GvOhdX2UKGgGR0CWJBuBtk4FaAdN6ANoCEdAqspsHbAUL3V9lChoBkdAlaj2DL8rJGgHTegDaAhHQKrKwuX/o7p1fZQoaAZHQJNF7Vf/m1ZoB03oA2gIR0Cq0ElpGnXNdX2UKGgGR0CTV6xGDtgKaAdN6ANoCEdAqtUJddE9dXV9lChoBkdAjJ6cU/OdG2gHTegDaAhHQKrXZq/M4cZ1fZQoaAZHQJOVBRk3CKtoB03oA2gIR0Cq15zwMH8kdX2UKGgGR0CUkjvb48EFaAdN6ANoCEdAqtyCkwevIXV9lChoBkdAlZDotDlYEGgHTegDaAhHQKrhlbCaZx91fZQoaAZHQJUAgN7SiM5oB03oA2gIR0Cq5Rd74SHudX2UKGgGR0CEzQSaEzwdaAdN6ANoCEdAquVuQMhHLHV9lChoBkdAkGRDZL7GemgHTegDaAhHQKrsd3qzJIV1fZQoaAZHQIwT8bYK6WhoB03oA2gIR0Cq8TfigkC4dX2UKGgGR0CRO4cHnlnzaAdN6ANoCEdAqvOt6w+t83V9lChoBkdAkvVGr4nF52gHTegDaAhHQKrz5UNrj5t1fZQoaAZHQJgRHqKP4mFoB03oA2gIR0Cq+PDjBEa3dX2UKGgGR0CYCOeIl+mWaAdN6ANoCEdAqv2mzD4xlHV9lChoBkdAgIG2y9mHxmgHTegDaAhHQKsAfPci4ax1fZQoaAZHQIbN/Td+G49oB03oA2gIR0CrAMyoXKr8dX2UKGgGR0CTrLRTCLuQaAdN6ANoCEdAqwg3f/FR53V9lChoBkdAlhOAKF7D22gHTegDaAhHQKsNg4//vOR1fZQoaAZHQJKVzfP5YYBoB03oA2gIR0CrD/rk0aZQdX2UKGgGR0CWc+reZXuFaAdN6ANoCEdAqxAxHqeK9HV9lChoBkdAl2LKlDWsimgHTegDaAhHQKsVEYGdI5J1fZQoaAZHQJkAQEV32VVoB03oA2gIR0CrGcNutOmBdX2UKGgGR0CViI6shgVoaAdN6ANoCEdAqxwfyZrpJXV9lChoBkdAl04XA/LTyGgHTegDaAhHQKscVn7Hhjx1fZQoaAZHQJp1LIS13MZoB03oA2gIR0CrIsZsj3VTdX2UKGgGR0CXL6EE1VHXaAdN6ANoCEdAqyl3K8tf5XV9lChoBkdAl6EdsabWmWgHTegDaAhHQKsr0JgLJCB1fZQoaAZHQJynq8L8aXNoB03oA2gIR0CrLAgHmig1dX2UKGgGR0CZuG9+PRzBaAdN6ANoCEdAqzEKCL/CInV9lChoBkdAmlxw66reZWgHTegDaAhHQKs113JPqLV1fZQoaAZHQJdTSU9pyp9oB03oA2gIR0CrOEECmuTzdX2UKGgGR0CY1ZDTjNpuaAdN6ANoCEdAqzh4hnrY5HV9lChoBkdAmHwkm+j/MmgHTegDaAhHQKs9sPvrnkl1fZQoaAZHQJury+vhZQpoB03oA2gIR0CrRKswDeTFdX2UKGgGR0Cb2IyEcsDoaAdN6ANoCEdAq0fg4Qz1snV9lChoBkdAm+PFlf7aZmgHTegDaAhHQKtIFzqbBoF1fZQoaAZHQJb2tdE9dNZoB03oA2gIR0CrTQtvOyE+dX2UKGgGR0CTY6gW8AaOaAdN6ANoCEdAq1GuVqveQHV9lChoBkdAeDOqHGjsU2gHTegDaAhHQKtUAbdadMF1fZQoaAZHQJUwHOObRWtoB03oA2gIR0CrVDe9zwMIdX2UKGgGR0CZzi8OCoS+aAdN6ANoCEdAq1kHACW/rXV9lChoBkdAlWwo0IkZ8GgHTegDaAhHQKtevfCQ9zR1fZQoaAZHQJRqj2QGOdZoB03oA2gIR0CrYlTAnDzidX2UKGgGR0CXZcFWXC0oaAdN6ANoCEdAq2Krl/6O53V9lChoBkdAligZuQ6p52gHTegDaAhHQKtorDQ7cO91fZQoaAZHQJig4LWqcVhoB03oA2gIR0CrbWkjHGS7dX2UKGgGR0CNJn3MY/FBaAdN6ANoCEdAq2/LTpgTiHV9lChoBkdAmLWAV9F4LWgHTegDaAhHQKtwBNSqEOB1fZQoaAZHQHcQYikfs/poB03oA2gIR0CrdODOTq0MdX2UKGgGR0CWicxNZeRgaAdN6ANoCEdAq3mXw5NoJ3V9lChoBkdAmeNvq9oN/mgHTegDaAhHQKt84TcqOLl1fZQoaAZHQJgzsrYoRZloB03oA2gIR0CrfS/smfGudX2UKGgGR0CSjreeWfK7aAdN6ANoCEdAq4SM+TvAoHV9lChoBkdAnA8BMrVe8mgHTegDaAhHQKuJTd1MdtF1fZQoaAZHQIK+jXWe6I5oB03oA2gIR0Cri5xb0OEvdX2UKGgGR0CZRvbHp8neaAdN6ANoCEdAq4vRiZv1lHV9lChoBkdAmVRZbyH2y2gHTegDaAhHQKuQvZX+2mZ1fZQoaAZHQJh6bq1PWQRoB03oA2gIR0CrlU3NLUTddX2UKGgGR0CW04n/kvK2aAdN6ANoCEdAq5em4AjptHV9lChoBkdAhgIvVd5Y5mgHTegDaAhHQKuX3SDRMOB1fZQoaAZHQJmkROXVsk9oB03oA2gIR0CrnscBEKE4dX2UKGgGR0CXz/xo7FKkaAdN6ANoCEdAq6TrLwF1S3V9lChoBkdAmIuO/k/8mGgHTegDaAhHQKunRXg9/z91fZQoaAZHQJMSzEETxoZoB03oA2gIR0Crp3yHmA9WdX2UKGgGR0CBSkFY+0PZaAdN6ANoCEdAq6xetdRiw3VlLg=="
|
63 |
+
},
|
64 |
+
"ep_success_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
67 |
+
},
|
68 |
+
"_n_updates": 62500,
|
69 |
+
"n_steps": 8,
|
70 |
+
"gamma": 0.99,
|
71 |
+
"gae_lambda": 0.9,
|
72 |
+
"ent_coef": 0.0,
|
73 |
+
"vf_coef": 0.4,
|
74 |
+
"max_grad_norm": 0.5,
|
75 |
+
"normalize_advantage": false,
|
76 |
+
"observation_space": {
|
77 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
78 |
+
":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
|
79 |
+
"dtype": "float32",
|
80 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
81 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
82 |
+
"_shape": [
|
83 |
+
28
|
84 |
+
],
|
85 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
86 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
87 |
+
"low_repr": "-inf",
|
88 |
+
"high_repr": "inf",
|
89 |
+
"_np_random": null
|
90 |
+
},
|
91 |
+
"action_space": {
|
92 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
93 |
+
":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
|
94 |
+
"dtype": "float32",
|
95 |
+
"bounded_below": "[ True True True True True True True True]",
|
96 |
+
"bounded_above": "[ True True True True True True True True]",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"low_repr": "-1.0",
|
103 |
+
"high_repr": "1.0",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4,
|
107 |
+
"lr_schedule": {
|
108 |
+
":type:": "<class 'function'>",
|
109 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
110 |
+
}
|
111 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f98954ac069367137938ecfe8754439488125e95820458e585c4bdd7f650a74b
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7847531b51a941ca5290d40bc23f8e6498891360175f86c0094ad441dc05118
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d963b22cc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d963b22cca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d963b22cd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d963b22cdc0>", "_build": "<function ActorCriticPolicy._build at 0x7d963b22ce50>", "forward": "<function ActorCriticPolicy.forward at 0x7d963b22cee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d963b22cf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d963b22d000>", "_predict": "<function ActorCriticPolicy._predict at 0x7d963b22d090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d963b22d120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d963b22d1b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d963b22d240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d963b230880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689686344103745841, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEV/Tr8Szc0/DMV+vyxdmb7gJb28Ub2kP3xGhz5g7jW+LQ6mvRdcib/qwEI+w7unPqGxqT4WsQnAeL/5PoJzJTwnnxY/dWa0v1sLNz8iS6697suRvThNnMCnceW+jwofPlxtdz+DJCM/PV0SP6nqdr+kRJs/e0iMPgYk+j5Txt0/O3tdv+20fj4THXS/aP8hvmEX3D6uORNAG30vP7dVcj4+P22/6j2YPn9Nmz4hzRG+Sz+dv82pqL/95JK/xJ9hQGfaFL8aDq48SL4zvynO4TxcbXc/3NrIvz1dEj+p6na/Sk5nPxW+iD+VJ0S9xmWzP76lyj55aK2/umffvk9elL/qPLK+ZypwvwxCGj2WAM0/fqAFP/xHOb+6Af8+7WOPvVJRjj68t4y/evnqvs2Moj6U5xS/wmY7PGc0yj8hkvy/V2+Ev4MkIz89XRI/qep2v5GkwT+rdIe/6JLePkILjD9cAbs9w1m4voqI6r5lEsm/d0usPlY9kb6gZN8+dgZMwGfRHb60Q4c/27zAvbaIrT6lg4c9OA28P+Misr5dsRXAvh2CPranxT/+uUk/IbANQFdvhL+DJCM/PuHfv6nqdr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABbrIe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8TPsPQAAAAAfwf+/AAAAALbooz0AAAAAMNn8PwAAAADAo4e6AAAAAIqi4j8AAAAApgwOPgAAAACK1v6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAckkWtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHD7xz0AAAAAKggAwAAAAADOT4O9AAAAAMXa4z8AAAAAVRUbPQAAAABy/OQ/AAAAABEUx70AAAAAurjyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmbnjQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB7d9I8AAAAAAZr2r8AAAAAUkqUPQAAAAAXOvk/AAAAAEZklb0AAAAAk7HwPwAAAAAHEB29AAAAAJ/x/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOF+82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHJfwvQAAAADyqgDAAAAAAKxvNb0AAAAA9BTzPwAAAAArA+M9AAAAAP5b+T8AAAAAhRIBvgAAAAAwqOa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUGXfyf+S+MAWyUTegDjAF0lEdAqlf7xsl9jXV9lChoBkdAlbsQ5R0lq2gHTegDaAhHQKpacR8twrF1fZQoaAZHQJfvVZyMkyFoB03oA2gIR0CqWqnLzPKMdX2UKGgGR0CWb0LEk0JoaAdN6ANoCEdAql+FTkyULXV9lChoBkdAlklsJ+lTFWgHTegDaAhHQKpkQyeqaPV1fZQoaAZHQJZQOAavRqpoB03oA2gIR0CqZzhH09QodX2UKGgGR0CYagMPjGT+aAdN6ANoCEdAqmeHiaRZEHV9lChoBkdAlknIb4rSVmgHTegDaAhHQKpvKXiR4hV1fZQoaAZHQJkRple4TbpoB03oA2gIR0CqdExkEs8QdX2UKGgGR0CXWfC/GlyjaAdN6ANoCEdAqna41R+BpnV9lChoBkdAlbPr9ETg22gHTegDaAhHQKp29JSzgMt1fZQoaAZHQJj1P8gpz91oB03oA2gIR0Cqe9ohQm/ndX2UKGgGR0CaKG+CsfaIaAdN6ANoCEdAqoC+BWgezXV9lChoBkdAmfGnqzJIUmgHTegDaAhHQKqDIIFeOXF1fZQoaAZHQJqh8NsnAqNoB03oA2gIR0Cqg1i7kGRndX2UKGgGR0CXyJ2USqVAaAdN6ANoCEdAqooWqFRHgHV9lChoBkdAmXw8GC7K72gHTegDaAhHQKqQgn/DLr51fZQoaAZHQHsOn4XXRPZoB03oA2gIR0CqkutKZlWfdX2UKGgGR0CEr8OhCdBjaAdN6ANoCEdAqpMkkIHC43V9lChoBkdAl1jvegte2WgHTegDaAhHQKqYDMDfWMF1fZQoaAZHQJaNIGVzIWBoB03oA2gIR0CqnMJF9a2XdX2UKGgGR0CYh7Ka5PM0aAdN6ANoCEdAqp8mce8wpXV9lChoBkdAmWfKw2VE/mgHTegDaAhHQKqfXh3JPqN1fZQoaAZHQJknFdIGyHFoB03oA2gIR0CqpN0jTrmhdX2UKGgGR0CKyVyT6i0waAdN6ANoCEdAqqwVyLhrFnV9lChoBkdAmboeBQN1AGgHTegDaAhHQKqu/eD3/Px1fZQoaAZHQJZxNsnAqNJoB03oA2gIR0CqrzQpWmxddX2UKGgGR0CZM9BeokzHaAdN6ANoCEdAqrQgHC4z8HV9lChoBkdAkduLUXpGF2gHTegDaAhHQKq4zL39JjF1fZQoaAZHQIOHL59E1EVoB03oA2gIR0Cquzvkili0dX2UKGgGR0BuATPGACnxaAdN6ANoCEdAqrtzL2YfGXV9lChoBkdAkbF0y1uzhWgHTegDaAhHQKrAY89Oh011fZQoaAZHQJTTDGR3eN1oB03oA2gIR0CqxrS7GvOhdX2UKGgGR0CWJBuBtk4FaAdN6ANoCEdAqspsHbAUL3V9lChoBkdAlaj2DL8rJGgHTegDaAhHQKrKwuX/o7p1fZQoaAZHQJNF7Vf/m1ZoB03oA2gIR0Cq0ElpGnXNdX2UKGgGR0CTV6xGDtgKaAdN6ANoCEdAqtUJddE9dXV9lChoBkdAjJ6cU/OdG2gHTegDaAhHQKrXZq/M4cZ1fZQoaAZHQJOVBRk3CKtoB03oA2gIR0Cq15zwMH8kdX2UKGgGR0CUkjvb48EFaAdN6ANoCEdAqtyCkwevIXV9lChoBkdAlZDotDlYEGgHTegDaAhHQKrhlbCaZx91fZQoaAZHQJUAgN7SiM5oB03oA2gIR0Cq5Rd74SHudX2UKGgGR0CEzQSaEzwdaAdN6ANoCEdAquVuQMhHLHV9lChoBkdAkGRDZL7GemgHTegDaAhHQKrsd3qzJIV1fZQoaAZHQIwT8bYK6WhoB03oA2gIR0Cq8TfigkC4dX2UKGgGR0CRO4cHnlnzaAdN6ANoCEdAqvOt6w+t83V9lChoBkdAkvVGr4nF52gHTegDaAhHQKrz5UNrj5t1fZQoaAZHQJgRHqKP4mFoB03oA2gIR0Cq+PDjBEa3dX2UKGgGR0CYCOeIl+mWaAdN6ANoCEdAqv2mzD4xlHV9lChoBkdAgIG2y9mHxmgHTegDaAhHQKsAfPci4ax1fZQoaAZHQIbN/Td+G49oB03oA2gIR0CrAMyoXKr8dX2UKGgGR0CTrLRTCLuQaAdN6ANoCEdAqwg3f/FR53V9lChoBkdAlhOAKF7D22gHTegDaAhHQKsNg4//vOR1fZQoaAZHQJKVzfP5YYBoB03oA2gIR0CrD/rk0aZQdX2UKGgGR0CWc+reZXuFaAdN6ANoCEdAqxAxHqeK9HV9lChoBkdAl2LKlDWsimgHTegDaAhHQKsVEYGdI5J1fZQoaAZHQJkAQEV32VVoB03oA2gIR0CrGcNutOmBdX2UKGgGR0CViI6shgVoaAdN6ANoCEdAqxwfyZrpJXV9lChoBkdAl04XA/LTyGgHTegDaAhHQKscVn7Hhjx1fZQoaAZHQJp1LIS13MZoB03oA2gIR0CrIsZsj3VTdX2UKGgGR0CXL6EE1VHXaAdN6ANoCEdAqyl3K8tf5XV9lChoBkdAl6EdsabWmWgHTegDaAhHQKsr0JgLJCB1fZQoaAZHQJynq8L8aXNoB03oA2gIR0CrLAgHmig1dX2UKGgGR0CZuG9+PRzBaAdN6ANoCEdAqzEKCL/CInV9lChoBkdAmlxw66reZWgHTegDaAhHQKs113JPqLV1fZQoaAZHQJdTSU9pyp9oB03oA2gIR0CrOEECmuTzdX2UKGgGR0CY1ZDTjNpuaAdN6ANoCEdAqzh4hnrY5HV9lChoBkdAmHwkm+j/MmgHTegDaAhHQKs9sPvrnkl1fZQoaAZHQJury+vhZQpoB03oA2gIR0CrRKswDeTFdX2UKGgGR0Cb2IyEcsDoaAdN6ANoCEdAq0fg4Qz1snV9lChoBkdAm+PFlf7aZmgHTegDaAhHQKtIFzqbBoF1fZQoaAZHQJb2tdE9dNZoB03oA2gIR0CrTQtvOyE+dX2UKGgGR0CTY6gW8AaOaAdN6ANoCEdAq1GuVqveQHV9lChoBkdAeDOqHGjsU2gHTegDaAhHQKtUAbdadMF1fZQoaAZHQJUwHOObRWtoB03oA2gIR0CrVDe9zwMIdX2UKGgGR0CZzi8OCoS+aAdN6ANoCEdAq1kHACW/rXV9lChoBkdAlWwo0IkZ8GgHTegDaAhHQKtevfCQ9zR1fZQoaAZHQJRqj2QGOdZoB03oA2gIR0CrYlTAnDzidX2UKGgGR0CXZcFWXC0oaAdN6ANoCEdAq2Krl/6O53V9lChoBkdAligZuQ6p52gHTegDaAhHQKtorDQ7cO91fZQoaAZHQJig4LWqcVhoB03oA2gIR0CrbWkjHGS7dX2UKGgGR0CNJn3MY/FBaAdN6ANoCEdAq2/LTpgTiHV9lChoBkdAmLWAV9F4LWgHTegDaAhHQKtwBNSqEOB1fZQoaAZHQHcQYikfs/poB03oA2gIR0CrdODOTq0MdX2UKGgGR0CWicxNZeRgaAdN6ANoCEdAq3mXw5NoJ3V9lChoBkdAmeNvq9oN/mgHTegDaAhHQKt84TcqOLl1fZQoaAZHQJgzsrYoRZloB03oA2gIR0CrfS/smfGudX2UKGgGR0CSjreeWfK7aAdN6ANoCEdAq4SM+TvAoHV9lChoBkdAnA8BMrVe8mgHTegDaAhHQKuJTd1MdtF1fZQoaAZHQIK+jXWe6I5oB03oA2gIR0Cri5xb0OEvdX2UKGgGR0CZRvbHp8neaAdN6ANoCEdAq4vRiZv1lHV9lChoBkdAmVRZbyH2y2gHTegDaAhHQKuQvZX+2mZ1fZQoaAZHQJh6bq1PWQRoB03oA2gIR0CrlU3NLUTddX2UKGgGR0CW04n/kvK2aAdN6ANoCEdAq5em4AjptHV9lChoBkdAhgIvVd5Y5mgHTegDaAhHQKuX3SDRMOB1fZQoaAZHQJmkROXVsk9oB03oA2gIR0CrnscBEKE4dX2UKGgGR0CXz/xo7FKkaAdN6ANoCEdAq6TrLwF1S3V9lChoBkdAmIuO/k/8mGgHTegDaAhHQKunRXg9/z91fZQoaAZHQJMSzEETxoZoB03oA2gIR0Crp3yHmA9WdX2UKGgGR0CBSkFY+0PZaAdN6ANoCEdAq6xetdRiw3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1351.2654420138047, "std_reward": 262.903180343712, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-18T14:21:40.013047"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c2164fbdcb07149b877576d39a29a614e97a583ce05deac502365869e05ab2f
|
3 |
+
size 2376
|