Oslaw commited on
Commit
b9bfa19
·
1 Parent(s): 1319942

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1351.27 +/- 262.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34c9df29934d195f1823850562f929ee21053b54b96fc46b79b81e85025f27fe
3
+ size 129531
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d963b22cc10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d963b22cca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d963b22cd30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d963b22cdc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d963b22ce50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d963b22cee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d963b22cf70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d963b22d000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d963b22d090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d963b22d120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d963b22d1b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d963b22d240>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d963b230880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1689686344103745841,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "_last_obs": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEV/Tr8Szc0/DMV+vyxdmb7gJb28Ub2kP3xGhz5g7jW+LQ6mvRdcib/qwEI+w7unPqGxqT4WsQnAeL/5PoJzJTwnnxY/dWa0v1sLNz8iS6697suRvThNnMCnceW+jwofPlxtdz+DJCM/PV0SP6nqdr+kRJs/e0iMPgYk+j5Txt0/O3tdv+20fj4THXS/aP8hvmEX3D6uORNAG30vP7dVcj4+P22/6j2YPn9Nmz4hzRG+Sz+dv82pqL/95JK/xJ9hQGfaFL8aDq48SL4zvynO4TxcbXc/3NrIvz1dEj+p6na/Sk5nPxW+iD+VJ0S9xmWzP76lyj55aK2/umffvk9elL/qPLK+ZypwvwxCGj2WAM0/fqAFP/xHOb+6Af8+7WOPvVJRjj68t4y/evnqvs2Moj6U5xS/wmY7PGc0yj8hkvy/V2+Ev4MkIz89XRI/qep2v5GkwT+rdIe/6JLePkILjD9cAbs9w1m4voqI6r5lEsm/d0usPlY9kb6gZN8+dgZMwGfRHb60Q4c/27zAvbaIrT6lg4c9OA28P+Misr5dsRXAvh2CPranxT/+uUk/IbANQFdvhL+DJCM/PuHfv6nqdr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
46
+ },
47
+ "_last_episode_starts": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
50
+ },
51
+ "_last_original_obs": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABbrIe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8TPsPQAAAAAfwf+/AAAAALbooz0AAAAAMNn8PwAAAADAo4e6AAAAAIqi4j8AAAAApgwOPgAAAACK1v6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAckkWtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHD7xz0AAAAAKggAwAAAAADOT4O9AAAAAMXa4z8AAAAAVRUbPQAAAABy/OQ/AAAAABEUx70AAAAAurjyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmbnjQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB7d9I8AAAAAAZr2r8AAAAAUkqUPQAAAAAXOvk/AAAAAEZklb0AAAAAk7HwPwAAAAAHEB29AAAAAJ/x/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOF+82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHJfwvQAAAADyqgDAAAAAAKxvNb0AAAAA9BTzPwAAAAArA+M9AAAAAP5b+T8AAAAAhRIBvgAAAAAwqOa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
+ },
55
+ "_episode_num": 0,
56
+ "use_sde": true,
57
+ "sde_sample_freq": -1,
58
+ "_current_progress_remaining": 0.0,
59
+ "_stats_window_size": 100,
60
+ "ep_info_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUGXfyf+S+MAWyUTegDjAF0lEdAqlf7xsl9jXV9lChoBkdAlbsQ5R0lq2gHTegDaAhHQKpacR8twrF1fZQoaAZHQJfvVZyMkyFoB03oA2gIR0CqWqnLzPKMdX2UKGgGR0CWb0LEk0JoaAdN6ANoCEdAql+FTkyULXV9lChoBkdAlklsJ+lTFWgHTegDaAhHQKpkQyeqaPV1fZQoaAZHQJZQOAavRqpoB03oA2gIR0CqZzhH09QodX2UKGgGR0CYagMPjGT+aAdN6ANoCEdAqmeHiaRZEHV9lChoBkdAlknIb4rSVmgHTegDaAhHQKpvKXiR4hV1fZQoaAZHQJkRple4TbpoB03oA2gIR0CqdExkEs8QdX2UKGgGR0CXWfC/GlyjaAdN6ANoCEdAqna41R+BpnV9lChoBkdAlbPr9ETg22gHTegDaAhHQKp29JSzgMt1fZQoaAZHQJj1P8gpz91oB03oA2gIR0Cqe9ohQm/ndX2UKGgGR0CaKG+CsfaIaAdN6ANoCEdAqoC+BWgezXV9lChoBkdAmfGnqzJIUmgHTegDaAhHQKqDIIFeOXF1fZQoaAZHQJqh8NsnAqNoB03oA2gIR0Cqg1i7kGRndX2UKGgGR0CXyJ2USqVAaAdN6ANoCEdAqooWqFRHgHV9lChoBkdAmXw8GC7K72gHTegDaAhHQKqQgn/DLr51fZQoaAZHQHsOn4XXRPZoB03oA2gIR0CqkutKZlWfdX2UKGgGR0CEr8OhCdBjaAdN6ANoCEdAqpMkkIHC43V9lChoBkdAl1jvegte2WgHTegDaAhHQKqYDMDfWMF1fZQoaAZHQJaNIGVzIWBoB03oA2gIR0CqnMJF9a2XdX2UKGgGR0CYh7Ka5PM0aAdN6ANoCEdAqp8mce8wpXV9lChoBkdAmWfKw2VE/mgHTegDaAhHQKqfXh3JPqN1fZQoaAZHQJknFdIGyHFoB03oA2gIR0CqpN0jTrmhdX2UKGgGR0CKyVyT6i0waAdN6ANoCEdAqqwVyLhrFnV9lChoBkdAmboeBQN1AGgHTegDaAhHQKqu/eD3/Px1fZQoaAZHQJZxNsnAqNJoB03oA2gIR0CqrzQpWmxddX2UKGgGR0CZM9BeokzHaAdN6ANoCEdAqrQgHC4z8HV9lChoBkdAkduLUXpGF2gHTegDaAhHQKq4zL39JjF1fZQoaAZHQIOHL59E1EVoB03oA2gIR0Cquzvkili0dX2UKGgGR0BuATPGACnxaAdN6ANoCEdAqrtzL2YfGXV9lChoBkdAkbF0y1uzhWgHTegDaAhHQKrAY89Oh011fZQoaAZHQJTTDGR3eN1oB03oA2gIR0CqxrS7GvOhdX2UKGgGR0CWJBuBtk4FaAdN6ANoCEdAqspsHbAUL3V9lChoBkdAlaj2DL8rJGgHTegDaAhHQKrKwuX/o7p1fZQoaAZHQJNF7Vf/m1ZoB03oA2gIR0Cq0ElpGnXNdX2UKGgGR0CTV6xGDtgKaAdN6ANoCEdAqtUJddE9dXV9lChoBkdAjJ6cU/OdG2gHTegDaAhHQKrXZq/M4cZ1fZQoaAZHQJOVBRk3CKtoB03oA2gIR0Cq15zwMH8kdX2UKGgGR0CUkjvb48EFaAdN6ANoCEdAqtyCkwevIXV9lChoBkdAlZDotDlYEGgHTegDaAhHQKrhlbCaZx91fZQoaAZHQJUAgN7SiM5oB03oA2gIR0Cq5Rd74SHudX2UKGgGR0CEzQSaEzwdaAdN6ANoCEdAquVuQMhHLHV9lChoBkdAkGRDZL7GemgHTegDaAhHQKrsd3qzJIV1fZQoaAZHQIwT8bYK6WhoB03oA2gIR0Cq8TfigkC4dX2UKGgGR0CRO4cHnlnzaAdN6ANoCEdAqvOt6w+t83V9lChoBkdAkvVGr4nF52gHTegDaAhHQKrz5UNrj5t1fZQoaAZHQJgRHqKP4mFoB03oA2gIR0Cq+PDjBEa3dX2UKGgGR0CYCOeIl+mWaAdN6ANoCEdAqv2mzD4xlHV9lChoBkdAgIG2y9mHxmgHTegDaAhHQKsAfPci4ax1fZQoaAZHQIbN/Td+G49oB03oA2gIR0CrAMyoXKr8dX2UKGgGR0CTrLRTCLuQaAdN6ANoCEdAqwg3f/FR53V9lChoBkdAlhOAKF7D22gHTegDaAhHQKsNg4//vOR1fZQoaAZHQJKVzfP5YYBoB03oA2gIR0CrD/rk0aZQdX2UKGgGR0CWc+reZXuFaAdN6ANoCEdAqxAxHqeK9HV9lChoBkdAl2LKlDWsimgHTegDaAhHQKsVEYGdI5J1fZQoaAZHQJkAQEV32VVoB03oA2gIR0CrGcNutOmBdX2UKGgGR0CViI6shgVoaAdN6ANoCEdAqxwfyZrpJXV9lChoBkdAl04XA/LTyGgHTegDaAhHQKscVn7Hhjx1fZQoaAZHQJp1LIS13MZoB03oA2gIR0CrIsZsj3VTdX2UKGgGR0CXL6EE1VHXaAdN6ANoCEdAqyl3K8tf5XV9lChoBkdAl6EdsabWmWgHTegDaAhHQKsr0JgLJCB1fZQoaAZHQJynq8L8aXNoB03oA2gIR0CrLAgHmig1dX2UKGgGR0CZuG9+PRzBaAdN6ANoCEdAqzEKCL/CInV9lChoBkdAmlxw66reZWgHTegDaAhHQKs113JPqLV1fZQoaAZHQJdTSU9pyp9oB03oA2gIR0CrOEECmuTzdX2UKGgGR0CY1ZDTjNpuaAdN6ANoCEdAqzh4hnrY5HV9lChoBkdAmHwkm+j/MmgHTegDaAhHQKs9sPvrnkl1fZQoaAZHQJury+vhZQpoB03oA2gIR0CrRKswDeTFdX2UKGgGR0Cb2IyEcsDoaAdN6ANoCEdAq0fg4Qz1snV9lChoBkdAm+PFlf7aZmgHTegDaAhHQKtIFzqbBoF1fZQoaAZHQJb2tdE9dNZoB03oA2gIR0CrTQtvOyE+dX2UKGgGR0CTY6gW8AaOaAdN6ANoCEdAq1GuVqveQHV9lChoBkdAeDOqHGjsU2gHTegDaAhHQKtUAbdadMF1fZQoaAZHQJUwHOObRWtoB03oA2gIR0CrVDe9zwMIdX2UKGgGR0CZzi8OCoS+aAdN6ANoCEdAq1kHACW/rXV9lChoBkdAlWwo0IkZ8GgHTegDaAhHQKtevfCQ9zR1fZQoaAZHQJRqj2QGOdZoB03oA2gIR0CrYlTAnDzidX2UKGgGR0CXZcFWXC0oaAdN6ANoCEdAq2Krl/6O53V9lChoBkdAligZuQ6p52gHTegDaAhHQKtorDQ7cO91fZQoaAZHQJig4LWqcVhoB03oA2gIR0CrbWkjHGS7dX2UKGgGR0CNJn3MY/FBaAdN6ANoCEdAq2/LTpgTiHV9lChoBkdAmLWAV9F4LWgHTegDaAhHQKtwBNSqEOB1fZQoaAZHQHcQYikfs/poB03oA2gIR0CrdODOTq0MdX2UKGgGR0CWicxNZeRgaAdN6ANoCEdAq3mXw5NoJ3V9lChoBkdAmeNvq9oN/mgHTegDaAhHQKt84TcqOLl1fZQoaAZHQJgzsrYoRZloB03oA2gIR0CrfS/smfGudX2UKGgGR0CSjreeWfK7aAdN6ANoCEdAq4SM+TvAoHV9lChoBkdAnA8BMrVe8mgHTegDaAhHQKuJTd1MdtF1fZQoaAZHQIK+jXWe6I5oB03oA2gIR0Cri5xb0OEvdX2UKGgGR0CZRvbHp8neaAdN6ANoCEdAq4vRiZv1lHV9lChoBkdAmVRZbyH2y2gHTegDaAhHQKuQvZX+2mZ1fZQoaAZHQJh6bq1PWQRoB03oA2gIR0CrlU3NLUTddX2UKGgGR0CW04n/kvK2aAdN6ANoCEdAq5em4AjptHV9lChoBkdAhgIvVd5Y5mgHTegDaAhHQKuX3SDRMOB1fZQoaAZHQJmkROXVsk9oB03oA2gIR0CrnscBEKE4dX2UKGgGR0CXz/xo7FKkaAdN6ANoCEdAq6TrLwF1S3V9lChoBkdAmIuO/k/8mGgHTegDaAhHQKunRXg9/z91fZQoaAZHQJMSzEETxoZoB03oA2gIR0Crp3yHmA9WdX2UKGgGR0CBSkFY+0PZaAdN6ANoCEdAq6xetdRiw3VlLg=="
63
+ },
64
+ "ep_success_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
67
+ },
68
+ "_n_updates": 62500,
69
+ "n_steps": 8,
70
+ "gamma": 0.99,
71
+ "gae_lambda": 0.9,
72
+ "ent_coef": 0.0,
73
+ "vf_coef": 0.4,
74
+ "max_grad_norm": 0.5,
75
+ "normalize_advantage": false,
76
+ "observation_space": {
77
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
78
+ ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
79
+ "dtype": "float32",
80
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
81
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
82
+ "_shape": [
83
+ 28
84
+ ],
85
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
86
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
87
+ "low_repr": "-inf",
88
+ "high_repr": "inf",
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
93
+ ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
94
+ "dtype": "float32",
95
+ "bounded_below": "[ True True True True True True True True]",
96
+ "bounded_above": "[ True True True True True True True True]",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "low_repr": "-1.0",
103
+ "high_repr": "1.0",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ }
111
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f98954ac069367137938ecfe8754439488125e95820458e585c4bdd7f650a74b
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7847531b51a941ca5290d40bc23f8e6498891360175f86c0094ad441dc05118
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d963b22cc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d963b22cca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d963b22cd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d963b22cdc0>", "_build": "<function ActorCriticPolicy._build at 0x7d963b22ce50>", "forward": "<function ActorCriticPolicy.forward at 0x7d963b22cee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d963b22cf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d963b22d000>", "_predict": "<function ActorCriticPolicy._predict at 0x7d963b22d090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d963b22d120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d963b22d1b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d963b22d240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d963b230880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689686344103745841, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEV/Tr8Szc0/DMV+vyxdmb7gJb28Ub2kP3xGhz5g7jW+LQ6mvRdcib/qwEI+w7unPqGxqT4WsQnAeL/5PoJzJTwnnxY/dWa0v1sLNz8iS6697suRvThNnMCnceW+jwofPlxtdz+DJCM/PV0SP6nqdr+kRJs/e0iMPgYk+j5Txt0/O3tdv+20fj4THXS/aP8hvmEX3D6uORNAG30vP7dVcj4+P22/6j2YPn9Nmz4hzRG+Sz+dv82pqL/95JK/xJ9hQGfaFL8aDq48SL4zvynO4TxcbXc/3NrIvz1dEj+p6na/Sk5nPxW+iD+VJ0S9xmWzP76lyj55aK2/umffvk9elL/qPLK+ZypwvwxCGj2WAM0/fqAFP/xHOb+6Af8+7WOPvVJRjj68t4y/evnqvs2Moj6U5xS/wmY7PGc0yj8hkvy/V2+Ev4MkIz89XRI/qep2v5GkwT+rdIe/6JLePkILjD9cAbs9w1m4voqI6r5lEsm/d0usPlY9kb6gZN8+dgZMwGfRHb60Q4c/27zAvbaIrT6lg4c9OA28P+Misr5dsRXAvh2CPranxT/+uUk/IbANQFdvhL+DJCM/PuHfv6nqdr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABbrIe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8TPsPQAAAAAfwf+/AAAAALbooz0AAAAAMNn8PwAAAADAo4e6AAAAAIqi4j8AAAAApgwOPgAAAACK1v6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAckkWtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHD7xz0AAAAAKggAwAAAAADOT4O9AAAAAMXa4z8AAAAAVRUbPQAAAABy/OQ/AAAAABEUx70AAAAAurjyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmbnjQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB7d9I8AAAAAAZr2r8AAAAAUkqUPQAAAAAXOvk/AAAAAEZklb0AAAAAk7HwPwAAAAAHEB29AAAAAJ/x/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOF+82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHJfwvQAAAADyqgDAAAAAAKxvNb0AAAAA9BTzPwAAAAArA+M9AAAAAP5b+T8AAAAAhRIBvgAAAAAwqOa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUGXfyf+S+MAWyUTegDjAF0lEdAqlf7xsl9jXV9lChoBkdAlbsQ5R0lq2gHTegDaAhHQKpacR8twrF1fZQoaAZHQJfvVZyMkyFoB03oA2gIR0CqWqnLzPKMdX2UKGgGR0CWb0LEk0JoaAdN6ANoCEdAql+FTkyULXV9lChoBkdAlklsJ+lTFWgHTegDaAhHQKpkQyeqaPV1fZQoaAZHQJZQOAavRqpoB03oA2gIR0CqZzhH09QodX2UKGgGR0CYagMPjGT+aAdN6ANoCEdAqmeHiaRZEHV9lChoBkdAlknIb4rSVmgHTegDaAhHQKpvKXiR4hV1fZQoaAZHQJkRple4TbpoB03oA2gIR0CqdExkEs8QdX2UKGgGR0CXWfC/GlyjaAdN6ANoCEdAqna41R+BpnV9lChoBkdAlbPr9ETg22gHTegDaAhHQKp29JSzgMt1fZQoaAZHQJj1P8gpz91oB03oA2gIR0Cqe9ohQm/ndX2UKGgGR0CaKG+CsfaIaAdN6ANoCEdAqoC+BWgezXV9lChoBkdAmfGnqzJIUmgHTegDaAhHQKqDIIFeOXF1fZQoaAZHQJqh8NsnAqNoB03oA2gIR0Cqg1i7kGRndX2UKGgGR0CXyJ2USqVAaAdN6ANoCEdAqooWqFRHgHV9lChoBkdAmXw8GC7K72gHTegDaAhHQKqQgn/DLr51fZQoaAZHQHsOn4XXRPZoB03oA2gIR0CqkutKZlWfdX2UKGgGR0CEr8OhCdBjaAdN6ANoCEdAqpMkkIHC43V9lChoBkdAl1jvegte2WgHTegDaAhHQKqYDMDfWMF1fZQoaAZHQJaNIGVzIWBoB03oA2gIR0CqnMJF9a2XdX2UKGgGR0CYh7Ka5PM0aAdN6ANoCEdAqp8mce8wpXV9lChoBkdAmWfKw2VE/mgHTegDaAhHQKqfXh3JPqN1fZQoaAZHQJknFdIGyHFoB03oA2gIR0CqpN0jTrmhdX2UKGgGR0CKyVyT6i0waAdN6ANoCEdAqqwVyLhrFnV9lChoBkdAmboeBQN1AGgHTegDaAhHQKqu/eD3/Px1fZQoaAZHQJZxNsnAqNJoB03oA2gIR0CqrzQpWmxddX2UKGgGR0CZM9BeokzHaAdN6ANoCEdAqrQgHC4z8HV9lChoBkdAkduLUXpGF2gHTegDaAhHQKq4zL39JjF1fZQoaAZHQIOHL59E1EVoB03oA2gIR0Cquzvkili0dX2UKGgGR0BuATPGACnxaAdN6ANoCEdAqrtzL2YfGXV9lChoBkdAkbF0y1uzhWgHTegDaAhHQKrAY89Oh011fZQoaAZHQJTTDGR3eN1oB03oA2gIR0CqxrS7GvOhdX2UKGgGR0CWJBuBtk4FaAdN6ANoCEdAqspsHbAUL3V9lChoBkdAlaj2DL8rJGgHTegDaAhHQKrKwuX/o7p1fZQoaAZHQJNF7Vf/m1ZoB03oA2gIR0Cq0ElpGnXNdX2UKGgGR0CTV6xGDtgKaAdN6ANoCEdAqtUJddE9dXV9lChoBkdAjJ6cU/OdG2gHTegDaAhHQKrXZq/M4cZ1fZQoaAZHQJOVBRk3CKtoB03oA2gIR0Cq15zwMH8kdX2UKGgGR0CUkjvb48EFaAdN6ANoCEdAqtyCkwevIXV9lChoBkdAlZDotDlYEGgHTegDaAhHQKrhlbCaZx91fZQoaAZHQJUAgN7SiM5oB03oA2gIR0Cq5Rd74SHudX2UKGgGR0CEzQSaEzwdaAdN6ANoCEdAquVuQMhHLHV9lChoBkdAkGRDZL7GemgHTegDaAhHQKrsd3qzJIV1fZQoaAZHQIwT8bYK6WhoB03oA2gIR0Cq8TfigkC4dX2UKGgGR0CRO4cHnlnzaAdN6ANoCEdAqvOt6w+t83V9lChoBkdAkvVGr4nF52gHTegDaAhHQKrz5UNrj5t1fZQoaAZHQJgRHqKP4mFoB03oA2gIR0Cq+PDjBEa3dX2UKGgGR0CYCOeIl+mWaAdN6ANoCEdAqv2mzD4xlHV9lChoBkdAgIG2y9mHxmgHTegDaAhHQKsAfPci4ax1fZQoaAZHQIbN/Td+G49oB03oA2gIR0CrAMyoXKr8dX2UKGgGR0CTrLRTCLuQaAdN6ANoCEdAqwg3f/FR53V9lChoBkdAlhOAKF7D22gHTegDaAhHQKsNg4//vOR1fZQoaAZHQJKVzfP5YYBoB03oA2gIR0CrD/rk0aZQdX2UKGgGR0CWc+reZXuFaAdN6ANoCEdAqxAxHqeK9HV9lChoBkdAl2LKlDWsimgHTegDaAhHQKsVEYGdI5J1fZQoaAZHQJkAQEV32VVoB03oA2gIR0CrGcNutOmBdX2UKGgGR0CViI6shgVoaAdN6ANoCEdAqxwfyZrpJXV9lChoBkdAl04XA/LTyGgHTegDaAhHQKscVn7Hhjx1fZQoaAZHQJp1LIS13MZoB03oA2gIR0CrIsZsj3VTdX2UKGgGR0CXL6EE1VHXaAdN6ANoCEdAqyl3K8tf5XV9lChoBkdAl6EdsabWmWgHTegDaAhHQKsr0JgLJCB1fZQoaAZHQJynq8L8aXNoB03oA2gIR0CrLAgHmig1dX2UKGgGR0CZuG9+PRzBaAdN6ANoCEdAqzEKCL/CInV9lChoBkdAmlxw66reZWgHTegDaAhHQKs113JPqLV1fZQoaAZHQJdTSU9pyp9oB03oA2gIR0CrOEECmuTzdX2UKGgGR0CY1ZDTjNpuaAdN6ANoCEdAqzh4hnrY5HV9lChoBkdAmHwkm+j/MmgHTegDaAhHQKs9sPvrnkl1fZQoaAZHQJury+vhZQpoB03oA2gIR0CrRKswDeTFdX2UKGgGR0Cb2IyEcsDoaAdN6ANoCEdAq0fg4Qz1snV9lChoBkdAm+PFlf7aZmgHTegDaAhHQKtIFzqbBoF1fZQoaAZHQJb2tdE9dNZoB03oA2gIR0CrTQtvOyE+dX2UKGgGR0CTY6gW8AaOaAdN6ANoCEdAq1GuVqveQHV9lChoBkdAeDOqHGjsU2gHTegDaAhHQKtUAbdadMF1fZQoaAZHQJUwHOObRWtoB03oA2gIR0CrVDe9zwMIdX2UKGgGR0CZzi8OCoS+aAdN6ANoCEdAq1kHACW/rXV9lChoBkdAlWwo0IkZ8GgHTegDaAhHQKtevfCQ9zR1fZQoaAZHQJRqj2QGOdZoB03oA2gIR0CrYlTAnDzidX2UKGgGR0CXZcFWXC0oaAdN6ANoCEdAq2Krl/6O53V9lChoBkdAligZuQ6p52gHTegDaAhHQKtorDQ7cO91fZQoaAZHQJig4LWqcVhoB03oA2gIR0CrbWkjHGS7dX2UKGgGR0CNJn3MY/FBaAdN6ANoCEdAq2/LTpgTiHV9lChoBkdAmLWAV9F4LWgHTegDaAhHQKtwBNSqEOB1fZQoaAZHQHcQYikfs/poB03oA2gIR0CrdODOTq0MdX2UKGgGR0CWicxNZeRgaAdN6ANoCEdAq3mXw5NoJ3V9lChoBkdAmeNvq9oN/mgHTegDaAhHQKt84TcqOLl1fZQoaAZHQJgzsrYoRZloB03oA2gIR0CrfS/smfGudX2UKGgGR0CSjreeWfK7aAdN6ANoCEdAq4SM+TvAoHV9lChoBkdAnA8BMrVe8mgHTegDaAhHQKuJTd1MdtF1fZQoaAZHQIK+jXWe6I5oB03oA2gIR0Cri5xb0OEvdX2UKGgGR0CZRvbHp8neaAdN6ANoCEdAq4vRiZv1lHV9lChoBkdAmVRZbyH2y2gHTegDaAhHQKuQvZX+2mZ1fZQoaAZHQJh6bq1PWQRoB03oA2gIR0CrlU3NLUTddX2UKGgGR0CW04n/kvK2aAdN6ANoCEdAq5em4AjptHV9lChoBkdAhgIvVd5Y5mgHTegDaAhHQKuX3SDRMOB1fZQoaAZHQJmkROXVsk9oB03oA2gIR0CrnscBEKE4dX2UKGgGR0CXz/xo7FKkaAdN6ANoCEdAq6TrLwF1S3V9lChoBkdAmIuO/k/8mGgHTegDaAhHQKunRXg9/z91fZQoaAZHQJMSzEETxoZoB03oA2gIR0Crp3yHmA9WdX2UKGgGR0CBSkFY+0PZaAdN6ANoCEdAq6xetdRiw3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1351.2654420138047, "std_reward": 262.903180343712, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-18T14:21:40.013047"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c2164fbdcb07149b877576d39a29a614e97a583ce05deac502365869e05ab2f
3
+ size 2376