# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import Optional import fire from transformers import Seq2SeqTrainingArguments from llamafactory.data import get_dataset, get_template_and_fix_tokenizer from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.extras.misc import check_version, get_device_count from llamafactory.extras.packages import is_vllm_available from llamafactory.hparams import get_infer_args from llamafactory.model import load_tokenizer if is_vllm_available(): from vllm import LLM, SamplingParams from vllm.lora.request import LoRARequest def vllm_infer( model_name_or_path: str, adapter_name_or_path: str = None, dataset: str = "alpaca_en_demo", dataset_dir: str = "data", template: str = "default", cutoff_len: int = 2048, max_samples: int = None, vllm_config: str = "{}", save_name: str = "generated_predictions.jsonl", temperature: float = 0.95, top_p: float = 0.7, top_k: int = 50, max_new_tokens: int = 1024, repetition_penalty: float = 1.0, seed: Optional[int] = None, pipeline_parallel_size: int = 1, image_max_pixels: int = 768 * 768, image_min_pixels: int = 32 * 32, ): r""" Performs batch generation using vLLM engine, which supports tensor parallelism. Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo """ check_version("vllm>=0.4.3,<=0.7.2") if pipeline_parallel_size > get_device_count(): raise ValueError("Pipeline parallel size should be smaller than the number of gpus.") model_args, data_args, _, generating_args = get_infer_args( dict( model_name_or_path=model_name_or_path, adapter_name_or_path=adapter_name_or_path, dataset=dataset, dataset_dir=dataset_dir, template=template, cutoff_len=cutoff_len, max_samples=max_samples, preprocessing_num_workers=16, vllm_config=vllm_config, temperature=temperature, top_p=top_p, top_k=top_k, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, ) ) training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir") tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] template_obj = get_template_and_fix_tokenizer(tokenizer, data_args) template_obj.mm_plugin.expand_mm_tokens = False # for vllm generate dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module) inputs, prompts, labels = [], [], [] for sample in dataset_module["train_dataset"]: if sample["images"]: multi_modal_data = { "image": template_obj.mm_plugin._regularize_images( sample["images"], image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels ) } else: multi_modal_data = None inputs.append({"prompt_token_ids": sample["input_ids"], "multi_modal_data": multi_modal_data}) prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=False)) labels.append( tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=False) ) sampling_params = SamplingParams( repetition_penalty=generating_args.repetition_penalty or 1.0, # repetition_penalty must > 0 temperature=generating_args.temperature, top_p=generating_args.top_p or 1.0, # top_p must > 0 top_k=generating_args.top_k, stop_token_ids=template_obj.get_stop_token_ids(tokenizer), max_tokens=generating_args.max_new_tokens, skip_special_tokens=False, seed=seed, ) if model_args.adapter_name_or_path is not None: lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0]) else: lora_request = None engine_args = { "model": model_args.model_name_or_path, "trust_remote_code": True, "dtype": model_args.infer_dtype, "tensor_parallel_size": (get_device_count() // pipeline_parallel_size) or 1, "pipeline_parallel_size": pipeline_parallel_size, "disable_log_stats": True, "enable_lora": model_args.adapter_name_or_path is not None, } if template_obj.mm_plugin.__class__.__name__ != "BasePlugin": engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2} if isinstance(model_args.vllm_config, dict): engine_args.update(model_args.vllm_config) results = LLM(**engine_args).generate(inputs, sampling_params, lora_request=lora_request) preds = [result.outputs[0].text for result in results] with open(save_name, "w", encoding="utf-8") as f: for text, pred, label in zip(prompts, preds, labels): f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n") print("*" * 70) print(f"{len(prompts)} generated results have been saved at {save_name}.") print("*" * 70) if __name__ == "__main__": fire.Fire(vllm_infer)