# Copyright 2025 Tencent Inc. and the LlamaFactory team. # # This code is inspired by the Tencent's LLaMA-Pro library. # https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections import OrderedDict from typing import TYPE_CHECKING, Dict import fire import torch from huggingface_hub import split_torch_state_dict_into_shards from safetensors.torch import save_file from tqdm import tqdm from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, PreTrainedModel from transformers.modeling_utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME if TYPE_CHECKING: from transformers import PretrainedConfig def change_name(name: str, old_index: int, new_index: int) -> str: return name.replace(f".{old_index:d}.", f".{new_index:d}.") def block_expansion( model_name_or_path: str, output_dir: str, num_expand: int, shard_size: str = "5GB", save_safetensors: bool = True, ): r""" Performs block expansion for LLaMA, Mistral, Qwen2 or Yi models. Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8 """ config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) num_layers = getattr(config, "num_hidden_layers") if num_layers % num_expand != 0: raise ValueError(f"`num_layers` {num_layers} should be divisible by `num_expand` {num_expand}.") setattr(config, "num_hidden_layers", num_layers + num_expand) config.save_pretrained(output_dir) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) tokenizer.save_pretrained(output_dir) print(f"Expanding model of {num_layers} layers to {num_layers + num_expand} layers.") model = AutoModelForCausalLM.from_pretrained( model_name_or_path, torch_dtype="auto", device_map="cpu", trust_remote_code=True, low_cpu_mem_usage=True ) assert isinstance(model, PreTrainedModel) # type hint if save_safetensors and getattr(model.config, "tie_word_embeddings", False): del model.lm_head # safetensors does not allow shared weights split = num_layers // num_expand layer_cnt = 0 state_dict = model.state_dict() output_state_dict: Dict[str, "torch.Tensor"] = OrderedDict() for i in range(num_layers): for key, value in state_dict.items(): if f".{i:d}." in key: output_state_dict[change_name(key, i, layer_cnt)] = value print(f"Add layer {layer_cnt} copied from layer {i}.") layer_cnt += 1 if (i + 1) % split == 0: for key, value in state_dict.items(): if f".{i:d}." in key: if "down_proj" in key or "o_proj" in key: output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value) else: output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value) print(f"Add layer {layer_cnt} expanded from layer {i}.") layer_cnt += 1 for key, value in state_dict.items(): if key not in output_state_dict: output_state_dict[key] = value weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") state_dict_split = split_torch_state_dict_into_shards( output_state_dict, filename_pattern=filename_pattern, max_shard_size=shard_size ) for shard_file, tensors in tqdm(state_dict_split.filename_to_tensors.items(), desc="Save weights"): shard = {tensor: output_state_dict[tensor].contiguous() for tensor in tensors} if save_safetensors: save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) else: torch.save(shard, os.path.join(output_dir, shard_file)) if not state_dict_split.is_sharded: print(f"Model weights saved in {os.path.join(output_dir, weights_name)}.") else: index = { "metadata": state_dict_split.metadata, "weight_map": state_dict_split.tensor_to_filename, } index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: json.dump(index, f, indent=2, sort_keys=True) print(f"Model weights saved in {output_dir}.") print("- Fine-tune this model with:") print(f"model_name_or_path: {output_dir}") print("finetuning_type: freeze") print(f"freeze_trainable_layers: {num_expand}") print("use_llama_pro: true") if __name__ == "__main__": fire.Fire(block_expansion)