# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict import fire from tqdm import tqdm from llamafactory.data import get_dataset, get_template_and_fix_tokenizer from llamafactory.hparams import get_train_args from llamafactory.model import load_tokenizer def length_cdf( model_name_or_path: str, dataset: str = "alpaca_en_demo", dataset_dir: str = "data", template: str = "default", interval: int = 1000, ): r""" Calculates the distribution of the input lengths in the dataset. Usage: export CUDA_VISIBLE_DEVICES=0 python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default """ model_args, data_args, training_args, _, _ = get_train_args( dict( stage="sft", model_name_or_path=model_name_or_path, dataset=dataset, dataset_dir=dataset_dir, template=template, cutoff_len=1_000_000, preprocessing_num_workers=16, output_dir="dummy_dir", overwrite_cache=True, do_train=True, ) ) tokenizer_module = load_tokenizer(model_args) template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) trainset = get_dataset(template, model_args, data_args, training_args, "sft", **tokenizer_module)["train_dataset"] total_num = len(trainset) length_dict = defaultdict(int) for sample in tqdm(trainset["input_ids"], desc="Collecting lengths"): length_dict[len(sample) // interval * interval] += 1 length_tuples = list(length_dict.items()) length_tuples.sort() count_accu, prob_accu = 0, 0 for length, count in length_tuples: count_accu += count prob_accu += count / total_num * 100 print(f"{count_accu:d} ({prob_accu:.2f}%) samples have length < {length + interval}.") if __name__ == "__main__": fire.Fire(length_cdf)