# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections import OrderedDict from typing import Any, Dict import fire import torch from huggingface_hub import split_torch_state_dict_into_shards from safetensors.torch import save_file from tqdm import tqdm from transformers.modeling_utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME CONFIG_NAME = "config.json" def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool): baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict() for filepath in tqdm(os.listdir(input_dir), desc="Load weights"): if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"): shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu") baichuan2_state_dict.update(shard_weight) llama_state_dict: Dict[str, torch.Tensor] = OrderedDict() for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"): if "W_pack" in key: proj_size = value.size(0) // 3 llama_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :] llama_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :] llama_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :] elif "lm_head" in key: llama_state_dict[key] = torch.nn.functional.normalize(value) else: llama_state_dict[key] = value weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") state_dict_split = split_torch_state_dict_into_shards( llama_state_dict, filename_pattern=filename_pattern, max_shard_size=shard_size ) for shard_file, tensors in tqdm(state_dict_split.filename_to_tensors.items(), desc="Save weights"): shard = {tensor: llama_state_dict[tensor].contiguous() for tensor in tensors} if save_safetensors: save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) else: torch.save(shard, os.path.join(output_dir, shard_file)) if not state_dict_split.is_sharded: print(f"Model weights saved in {os.path.join(output_dir, weights_name)}.") else: index = { "metadata": state_dict_split.metadata, "weight_map": state_dict_split.tensor_to_filename, } index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: json.dump(index, f, indent=2, sort_keys=True) print(f"Model weights saved in {output_dir}.") def save_config(input_dir: str, output_dir: str): with open(os.path.join(input_dir, CONFIG_NAME), encoding="utf-8") as f: llama2_config_dict: Dict[str, Any] = json.load(f) llama2_config_dict["architectures"] = ["LlamaForCausalLM"] llama2_config_dict.pop("auto_map", None) llama2_config_dict.pop("tokenizer_class", None) llama2_config_dict["model_type"] = "llama" with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: json.dump(llama2_config_dict, f, indent=2) print(f"Model config saved in {os.path.join(output_dir, CONFIG_NAME)}") def llamafy_baichuan2( input_dir: str, output_dir: str, shard_size: str = "2GB", save_safetensors: bool = True, ): r""" Converts the Baichuan2-7B model in the same format as LLaMA2-7B. Usage: python llamafy_baichuan2.py --input_dir input --output_dir output Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied """ try: os.makedirs(output_dir, exist_ok=False) except Exception as e: raise print("Output dir already exists", e) save_weight(input_dir, output_dir, shard_size, save_safetensors) save_config(input_dir, output_dir) if __name__ == "__main__": fire.Fire(llamafy_baichuan2)