from llamafactory.data import Role from llamafactory.data.converter import get_dataset_converter from llamafactory.data.parser import DatasetAttr from llamafactory.hparams import DataArguments def test_alpaca_converter(): dataset_attr = DatasetAttr("hf_hub", "llamafactory/tiny-supervised-dataset") data_args = DataArguments() example = { "instruction": "Solve the math problem.", "input": "3 + 4", "output": "The answer is 7.", } dataset_converter = get_dataset_converter("alpaca", dataset_attr, data_args) assert dataset_converter(example) == { "_prompt": [{"role": Role.USER.value, "content": "Solve the math problem.\n3 + 4"}], "_response": [{"role": Role.ASSISTANT.value, "content": "The answer is 7."}], "_system": "", "_tools": "", "_images": None, "_videos": None, "_audios": None, } def test_sharegpt_converter(): dataset_attr = DatasetAttr("hf_hub", "llamafactory/tiny-supervised-dataset") data_args = DataArguments() example = { "conversations": [ {"from": "system", "value": "You are a helpful assistant."}, {"from": "human", "value": "Solve the math problem.\n3 + 4"}, {"from": "gpt", "value": "The answer is 7."}, ] } dataset_converter = get_dataset_converter("sharegpt", dataset_attr, data_args) assert dataset_converter(example) == { "_prompt": [{"role": Role.USER.value, "content": "Solve the math problem.\n3 + 4"}], "_response": [{"role": Role.ASSISTANT.value, "content": "The answer is 7."}], "_system": "You are a helpful assistant.", "_tools": "", "_images": None, "_videos": None, "_audios": None, }